A381715 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into distinct constant blocks.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into distinct constant blocks: {{2,2,2},{1,1,1,1,1,1}} {{1},{2,2,2},{1,1,1,1,1}} {{2},{2,2},{1,1,1,1,1,1}} {{1,1},{2,2,2},{1,1,1,1}} {{1},{2},{2,2},{1,1,1,1,1}} {{1},{1,1},{1,1,1},{2,2,2}} {{2},{1,1},{2,2},{1,1,1,1}} {{1},{2},{1,1},{2,2},{1,1,1}} with sums: {6,6} {1,5,6} {2,4,6} {2,4,6} {1,2,4,5} {1,2,3,6} {2,2,4,4} {1,2,2,3,4} of which 7 are distinct, so a(1728) = 7.
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&&And@@SameQ@@@#&]]],{n,100}]
Comments