A381717 Number of integer partitions of n that cannot be partitioned into constant multisets with distinct block-sums.
0, 0, 0, 0, 1, 0, 0, 1, 3, 2, 3, 6, 7, 10, 15, 15, 28, 37, 47, 64, 71, 97, 139, 173, 215, 273, 361, 439, 551, 691, 853, 1078, 1325, 1623, 2046, 2458, 2998, 3697, 4527, 5472, 6590, 7988, 9590, 11598, 13933, 16560, 19976, 23822, 28420, 33797, 40088, 47476, 56369, 66678
Offset: 0
Keywords
Examples
For y = (3,2,2,1) we have the multiset partition {{3},{2,2},{1}}, so y is not counted under a(8). For y = (3,2,1,1,1) there are 3 multiset partitions into constant multisets: {{3},{2},{1,1,1}} {{3},{2},{1,1},{1}} {{3},{2},{1},{1},{1}} but none of these has distinct block-sums, so y is counted under a(8). For y = (3,3,1,1,1,1,1,1) we have multiset partitions: {{1},{3,3},{1,1,1,1,1}} {{1,1},{3,3},{1,1,1,1}} {{1},{1,1},{3,3},{1,1,1}} so y is not counted under a(12). The a(4) = 1 through a(13) = 10 partitions: 211 . . 3211 422 4221 6211 4322 633 5422 4211 5211 33211 7211 8211 6331 32111 42211 43211 43221 9211 422111 44211 54211 431111 53211 63211 3221111 432111 333211 4221111 432211 532111 4321111 42211111
Crossrefs
Programs
-
Mathematica
mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}]; Table[Length[Select[IntegerPartitions[n],Select[Join@@@Tuples[mce/@Split[#]],UnsameQ@@Total/@#&]=={}&]],{n,0,30}]
Extensions
a(37)-a(53) from Robert Price, Mar 31 2025
Comments