cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381717 Number of integer partitions of n that cannot be partitioned into constant multisets with distinct block-sums.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 3, 2, 3, 6, 7, 10, 15, 15, 28, 37, 47, 64, 71, 97, 139, 173, 215, 273, 361, 439, 551, 691, 853, 1078, 1325, 1623, 2046, 2458, 2998, 3697, 4527, 5472, 6590, 7988, 9590, 11598, 13933, 16560, 19976, 23822, 28420, 33797, 40088, 47476, 56369, 66678
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2025

Keywords

Comments

Conjecture: Also the number of integer partitions of n having no permutation with all distinct run-sums, ranked by zeros of A382876. In other words, a partition has a permutation with all distinct run-sums iff it has a multiset partition into constant blocks with all distinct block-sums, where the run-sums of a sequence are obtained by splitting it into maximal runs and taking their sums.

Examples

			For y = (3,2,2,1) we have the multiset partition {{3},{2,2},{1}}, so y is not counted under a(8).
For y = (3,2,1,1,1) there are 3 multiset partitions into constant multisets:
  {{3},{2},{1,1,1}}
  {{3},{2},{1,1},{1}}
  {{3},{2},{1},{1},{1}}
but none of these has distinct block-sums, so y is counted under a(8).
For y = (3,3,1,1,1,1,1,1) we have multiset partitions:
  {{1},{3,3},{1,1,1,1,1}}
  {{1,1},{3,3},{1,1,1,1}}
  {{1},{1,1},{3,3},{1,1,1}}
so y is not counted under a(12).
The a(4) = 1 through a(13) = 10 partitions:
  211  .  .  3211  422    4221  6211   4322     633      5422
                   4211   5211  33211  7211     8211     6331
                   32111        42211  43211    43221    9211
                                       422111   44211    54211
                                       431111   53211    63211
                                       3221111  432111   333211
                                                4221111  432211
                                                         532111
                                                         4321111
                                                         42211111
		

Crossrefs

Twice-partitions of this type (constant with distinct) are counted by A279786.
Multiset partitions of this type are ranked by A326535 /\ A355743.
These partitions are ranked by A381636, zeros of A381635.
For strict instead of constant blocks we have A381990, see A381806, A381633, A382079.
For equal instead of distinct block-sums we have A381993.
A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers, see A381455, A381453.
A001055 counts factorizations, strict A045778, see A317141, A300383.
A050361 counts factorizations into distinct prime powers.

Programs

  • Mathematica
    mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
    Table[Length[Select[IntegerPartitions[n],Select[Join@@@Tuples[mce/@Split[#]],UnsameQ@@Total/@#&]=={}&]],{n,0,30}]

Extensions

a(37)-a(53) from Robert Price, Mar 31 2025