cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A381454 Number of multisets that can be obtained by choosing a strict integer partition of each prime index of n and taking the multiset union.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 4, 2, 2, 1, 5, 1, 6, 2, 2, 3, 8, 1, 3, 4, 1, 2, 10, 2, 12, 1, 3, 5, 4, 1, 15, 6, 4, 2, 18, 2, 22, 3, 2, 8, 27, 1, 3, 3, 5, 4, 32, 1, 6, 2, 6, 10, 38, 2, 46, 12, 2, 1, 8, 3, 54, 5, 8, 4, 64, 1, 76, 15, 3, 6, 6, 4, 89, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2025

Keywords

Comments

First differs from A357982 at a(25) = 3, A357982(25) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Set multipartitions are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no set multipartition {1,1,2} -> {4}.

Examples

			The a(25) = 3 multisets are: {3,3}, {1,2,3}, {1,1,2,2}.
		

Crossrefs

For constant instead of strict partitions see A381453, A355733, A381455, A000688.
Positions of 1 are A003586.
The upper version is A381078, before sums A050320.
For distinct block-sums see A381634, A381633, A381806.
Multiset partitions of prime indices:
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For set systems (A050326, zeros A293243) see A381441 (upper).
- For sets of constant multisets (A050361) see A381715.
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For sets of constant multisets with distinct sums (A381635, zeros A381636) see A381716.
More on set systems: A050342, A116539, A296120, A318361.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[n]]]],{n,100}]

Formula

a(A002110(n)) = A381808(n).

A381636 Numbers whose prime indices cannot be partitioned into constant blocks with distinct sums.

Original entry on oeis.org

12, 60, 63, 84, 120, 126, 132, 156, 204, 228, 252, 276, 300, 315, 325, 348, 372, 420, 444, 492, 504, 516, 560, 564, 588, 630, 636, 650, 660, 693, 708, 720, 732, 780, 804, 819, 840, 852, 876, 924, 931, 948, 975, 996, 1008, 1020, 1068, 1071, 1092, 1140, 1164
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers that cannot be written as a product of prime powers > 1 with distinct sums of prime indices (A056239).
Contains no squarefree numbers.
Conjecture: These are the zeros of A382876.

Examples

			The prime indices of 300 are {1,1,2,3,3}, with partitions into constant blocks:
  {{2},{1,1},{3,3}}
  {{1},{1},{2},{3,3}}
  {{2},{3},{3},{1,1}}
  {{1},{1},{2},{3},{3}}
but none of these has distinct block-sums, so 300 is in the sequence.
The terms together with their prime indices begin:
   12: {1,1,2}
   60: {1,1,2,3}
   63: {2,2,4}
   84: {1,1,2,4}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  132: {1,1,2,5}
  156: {1,1,2,6}
  204: {1,1,2,7}
  228: {1,1,2,8}
  252: {1,1,2,2,4}
  276: {1,1,2,9}
  300: {1,1,2,3,3}
		

Crossrefs

More on multiset partitions into constant blocks: A006171, A279784, A295935.
These are the positions of 0 in A381635, after taking block-sums A381716.
Partitions of this type are counted by A381717.
For strict instead of constant blocks we have A381806, zeros of A381633.
For equal instead of distinct block-sums we have A381871.
A000688 counts multiset partitions into constant, see A381455 (upper), A381453 (lower).
A001055 counts multiset partitions, see A317141 (upper), A300383 (lower).
A050361 counts multiset partitions into distinct constant blocks, after sums A381715.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Select[Range[100],Select[pfacs[#],UnsameQ@@hwt/@#&]=={}&]

A381633 Number of ways to partition the prime indices of n into sets with distinct sums.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2025

Keywords

Comments

First differs from A050326 at 30, 60, 70, 90, ...
First differs from A339742 at 42, 66, 78, 84, ...
First differs from A381634 at a(210) = 12, A381634(210) = 10.
Also the number of factorizations on n into squarefree numbers > 1 with distinct sums of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The A050320(60) = 6 ways to partition {1,1,2,3} into sets are:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{1},{3},{1,2}}
  {{1},{1},{2},{3}}
Of these, only the following have distinct block-sums:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{2},{1,3}}
So a(60) = 3.
		

Crossrefs

Without distinct block-sums we have A050320, after sums A381078 (lower A381454).
For distinct blocks instead of sums we have A050326, after sums A381441, see A358914.
Taking block-sums (and sorting) gives A381634.
For constant instead of strict blocks we have A381635, see A381716, A381636.
Positions of 0 are A381806, superset of A293243.
Positions of 1 are A381870, superset of A293511.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
A000041 counts integer partitions, strict A000009.
A001055 count multiset partitions of prime indices, see A317141 (upper), A300383 (lower).
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Select[sfacs[n],UnsameQ@@hwt/@#&]],{n,100}]

A381992 Number of integer partitions of n that can be partitioned into sets with distinct sums.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 170, 217, 282, 360, 449, 571, 719, 899, 1122, 1391, 1727, 2136, 2616, 3209, 3947, 4800, 5845, 7094, 8602, 10408, 12533, 15062, 18107, 21686, 25956, 30967, 36936, 43897, 52132, 61850, 73157, 86466, 101992, 120195
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2025

Keywords

Comments

Also the number of integer partitions of n whose Heinz number belongs to A382075 (can be written as a product of squarefree numbers with distinct sums of prime indices).

Examples

			There are 6 ways to partition (3,2,2,1) into sets:
  {{2},{1,2,3}}
  {{1,2},{2,3}}
  {{1},{2},{2,3}}
  {{2},{2},{1,3}}
  {{2},{3},{1,2}}
  {{1},{2},{2},{3}}
Of these, 3 have distinct block sums:
  {{2},{1,2,3}}
  {{1,2},{2,3}}
  {{1},{2},{2,3}}
so (3,2,2,1) is counted under a(8).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)  (3)    (4)      (5)      (6)        (7)        (8)
            (2,1)  (3,1)    (3,2)    (4,2)      (4,3)      (5,3)
                   (2,1,1)  (4,1)    (5,1)      (5,2)      (6,2)
                            (2,2,1)  (3,2,1)    (6,1)      (7,1)
                            (3,1,1)  (4,1,1)    (3,2,2)    (3,3,2)
                                     (2,2,1,1)  (3,3,1)    (4,2,2)
                                                (4,2,1)    (4,3,1)
                                                (5,1,1)    (5,2,1)
                                                (3,2,1,1)  (6,1,1)
                                                           (3,2,2,1)
                                                           (3,3,1,1)
                                                           (4,2,1,1)
                                                           (3,2,1,1,1)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Twice-partitions of this type are counted by A279785.
Multiset partitions of this type are counted by A381633, zeros of A381634.
For constant instead of strict blocks see A381717, A381636, A381635, A381716, A381991.
Normal multiset partitions of this type are counted by A381718, see A116539.
The complement is counted by A381990, ranked by A381806.
These partitions are ranked by A382075.
For distinct blocks instead of sums we have A382077, complement A382078.
For a unique choice we have A382079.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
A382201 lists MM-numbers of sets with distinct sums.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#], And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,10}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025

A382912 Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has no permutation with all distinct run-lengths.

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 124, 125, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 153, 156, 160, 162, 164
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms, prime indices, and corresponding multisets begin:
   4:       {1,1} {1,2}
   8:     {1,1,1} {1,2,3}
   9:       {2,2} {1,1,2,2}
  12:     {1,1,2} {1,1,2,3}
  16:   {1,1,1,1} {1,2,3,4}
  18:     {1,2,2} {1,1,2,2,3}
  20:     {1,1,3} {1,1,1,2,3}
  24:   {1,1,1,2} {1,1,2,3,4}
  27:     {2,2,2} {1,1,2,2,3,3}
  28:     {1,1,4} {1,1,1,1,2,3}
  32: {1,1,1,1,1} {1,2,3,4,5}
  36:   {1,1,2,2} {1,1,2,2,3,4}
  40:   {1,1,1,3} {1,1,1,2,3,4}
  44:     {1,1,5} {1,1,1,1,1,2,3}
  45:     {2,2,3} {1,1,1,2,2,3,3}
  48: {1,1,1,1,2} {1,1,2,3,4,5}
  50:     {1,3,3} {1,1,1,2,2,2,3}
  52:     {1,1,6} {1,1,1,1,1,1,2,3}
		

Crossrefs

The Look-and-Say partition is ranked by A048767, listed by A381440.
Look-and-Say partitions are counted by A239455, ranks A351294.
Non-Look-and-Say partitions are counted by A351293.
For prime indices instead of signature we have A351295, conjugate A381433.
The complement is A382913.
For equal instead of distinct run-lengths we have A382914, see A382858, A382879, A382915.
A056239 adds up prime indices, row sums of A112798.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A381431 lists the section-sum partition of n, ranks A381436, union A381432.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{}, Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_} :> Table[PrimePi[p],{k}]]]]];
    lasQ[y_]:=Select[Permutations[y], UnsameQ@@Length/@Split[#]&]!={};
    Select[Range[100],Not@*lasQ@*nrmptn]

A382913 Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has a permutation with all distinct run-lengths.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms, prime indices, and corresponding multisets begin:
   1:    {} {}
   2:   {1} {1}
   3:   {2} {1,1}
   5:   {3} {1,1,1}
   6: {1,2} {1,1,2}
   7:   {4} {1,1,1,1}
  10: {1,3} {1,1,1,2}
  11:   {5} {1,1,1,1,1}
  13:   {6} {1,1,1,1,1,1}
  14: {1,4} {1,1,1,1,2}
  15: {2,3} {1,1,1,2,2}
  17:   {7} {1,1,1,1,1,1,1}
  19:   {8} {1,1,1,1,1,1,1,1}
  21: {2,4} {1,1,1,1,2,2}
  22: {1,5} {1,1,1,1,1,2}
  23:   {9} {1,1,1,1,1,1,1,1,1}
  25: {3,3} {1,1,1,2,2,2}
  26: {1,6} {1,1,1,1,1,1,2}
		

Crossrefs

Look-and-Say partitions are counted by A239455, ranks A351294.
Non-Look-and-Say partitions are counted by A351293, ranks A351295.
For prime indices instead of signature we have A351294, conjugate A381432.
The Look-and-Say partition of n is listed by A381440, rank A048767.
The complement is A382912.
For equal run-lengths we have the complement of A382914, see A382858, A382879, A382915.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A381431 ranks section-sum partition, listed by A381436.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&, If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_} :> Table[PrimePi[p],{k}]]]]];
    lasQ[y_]:=Select[Permutations[y], UnsameQ@@Length/@Split[#]&]!={};
    Select[Range[100],lasQ@*nrmptn]

A381078 Number of multisets that can be obtained by partitioning the prime indices of n into a multiset of sets (set multipartition) and taking their sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 3, 1, 2, 2, 2, 2, 5, 1, 2, 1, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2025

Keywords

Comments

First differs from A050320 at a(210) = 13, A050320(210) = 15. This comes from the set multipartitions {{3},{1,2,4}} and {{1,2},{3,4}}, and from {{4},{1,2,3}} and {{1,3},{2,4}}.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into squarefree numbers > 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Set multipartitions are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no set multipartition {1,1,2} -> {4}.

Examples

			The prime indices of 60 are {1,1,2,3}, with set multipartitions:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{1},{3},{1,2}}
  {{1},{1},{2},{3}}
with block-sums: {1,6}, {3,4}, {1,1,5}, {1,2,4}, {1,3,3}, {1,1,2,3}, which are all different multisets, so a(60) = 6.
		

Crossrefs

Before taking sums we had A050320, strict A050326 (zeros A293243), distinct sums A381633.
For distinct blocks we have A381441.
The lower version is A381454.
For distinct block-sums we have A381634.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For sets of constant multisets (A050361) see A381717.
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}]

Formula

a(A002110(n)) = A066723(n).

A381871 Numbers whose prime indices cannot be partitioned into constant blocks having a common sum.

Original entry on oeis.org

6, 10, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 42, 44, 45, 46, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 110
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2025

Keywords

Comments

First differs from A383100 in lacking 108.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also numbers that cannot be written as a product of prime powers with equal sums of prime indices.
Partitions of this type are counted by A381993.

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   30: {1,2,3}
		

Crossrefs

Constant blocks: A000688, A006171, A279784, A295935, A381453 (lower), A381455 (upper).
Constant blocks with distinct sums: A381635, A381716.
For distinct instead of equal sums we have A381636, counted by A381717.
Partitions of this type are counted by A381993, complement A383093.
These are the positions of 0 in A381995.
A001055 counts multiset partitions of prime indices, strict A045778.
A050361 counts multiset partitions into distinct constant blocks.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Select[Range[100],Select[mps[prix[#]],SameQ@@Total/@#&&And@@SameQ@@@#&]=={}&]

A381990 Number of integer partitions of n that cannot be partitioned into a set (or multiset) of sets with distinct sums.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 127, 168, 208, 267, 343, 431, 536, 676, 836, 1045, 1283, 1582, 1949, 2395, 2895, 3549, 4298, 5216, 6281, 7569, 9104, 10953, 13078, 15652, 18627, 22207, 26325, 31278, 37002, 43708, 51597, 60807, 71533, 84031
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2025

Keywords

Examples

			The partition y = (3,3,3,2,2,1,1,1,1) has only one multiset partition into a set of sets, namely {{1},{3},{1,2},{1,3},{1,2,3}}, but this does not have distinct sums, so y is counted under a(17).
The a(2) = 1 through a(8) = 9 partitions:
  (11)  (111)  (22)    (2111)   (33)      (2221)     (44)
               (1111)  (11111)  (222)     (4111)     (2222)
                                (3111)    (22111)    (5111)
                                (21111)   (31111)    (22211)
                                (111111)  (211111)   (41111)
                                          (1111111)  (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Twice-partitions of this type are counted by A279785.
For constant instead of strict blocks see A381717, A381636, A381635, A381716, A381991.
Normal multiset partitions of this type are counted by A381718, see A116539.
These partitions are ranked by A381806, zeros of A381634 and A381633.
The complement is counted by A381992, ranked by A382075.
For distinct blocks we have A382078, complement A382077, unique A382079.
MM-numbers of these multiset partitions (strict blocks with distinct sum) are A382201.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]==0&]],{n,0,10}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025

A382077 Number of integer partitions of n that can be partitioned into a set of sets.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 171, 217, 283, 361, 449, 574, 721, 900, 1126, 1397, 1731, 2143, 2632, 3223, 3961, 4825, 5874, 7131, 8646, 10452, 12604, 15155, 18216, 21826, 26108, 31169, 37156, 44202, 52492, 62233, 73676, 87089, 102756, 121074
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2025

Keywords

Comments

First differs from A240306 at a(14) = 76, A240306(14) = 77.
First differs from A381992 at a(17) = 171, A381992(17) = 170.

Examples

			For y = (3,2,2,2,1,1,1), we have the multiset partition {{1},{2},{1,2},{1,2,3}}, so y is counted under a(12).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)  (3)    (4)      (5)      (6)        (7)        (8)
            (2,1)  (3,1)    (3,2)    (4,2)      (4,3)      (5,3)
                   (2,1,1)  (4,1)    (5,1)      (5,2)      (6,2)
                            (2,2,1)  (3,2,1)    (6,1)      (7,1)
                            (3,1,1)  (4,1,1)    (3,2,2)    (3,3,2)
                                     (2,2,1,1)  (3,3,1)    (4,2,2)
                                                (4,2,1)    (4,3,1)
                                                (5,1,1)    (5,2,1)
                                                (3,2,1,1)  (6,1,1)
                                                           (3,2,2,1)
                                                           (3,3,1,1)
                                                           (4,2,1,1)
                                                           (3,2,1,1,1)
		

Crossrefs

Factorizations of this type are counted by A050345.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Normal multiset partitions of this type are counted by A116539.
The MM-numbers of these multiset partitions are A302494.
Twice-partitions of this type are counted by A358914.
For distinct block-sums instead of blocks we have A381992, ranked by A382075.
The complement is counted by A382078, unique A382079.
These partitions are ranked by A382200, complement A293243.
For normal multisets instead of integer partitions we have A382214, complement A292432.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]>0&]],{n,0,9}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025
Showing 1-10 of 27 results. Next