A381718 Number of normal multiset partitions of weight n into sets with distinct sums.
1, 1, 2, 6, 23, 106, 549, 3184, 20353, 141615, 1063399, 8554800, 73281988, 665141182, 6369920854, 64133095134, 676690490875, 7462023572238, 85786458777923, 1025956348473929, 12739037494941490
Offset: 0
Keywords
Examples
The a(1) = 1 through a(3) = 6 multiset partitions: {{1}} {{1,2}} {{1,2,3}} {{1},{2}} {{1},{1,2}} {{1},{2,3}} {{2},{1,2}} {{2},{1,3}} {{1},{2},{3}} The a(4) = 23 factorizations: 2*3*6 5*30 3*30 2*30 210 10*15 6*15 6*10 2*105 2*5*15 2*3*15 2*3*10 3*70 3*5*10 5*42 7*30 6*35 10*21 2*3*35 2*5*21 2*7*15 3*5*14 2*3*5*7
Crossrefs
Programs
-
Mathematica
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]
Extensions
a(10)-a(11) from Robert Price, Mar 31 2025
a(12)-a(20) from Christian Sievers, Apr 05 2025
Comments