A381720 Integers whose Hamming weight is a cube.
0, 1, 2, 4, 8, 16, 32, 64, 128, 255, 256, 383, 447, 479, 495, 503, 507, 509, 510, 512, 639, 703, 735, 751, 759, 763, 765, 766, 831, 863, 879, 887, 891, 893, 894, 927, 943, 951, 955, 957, 958, 975, 983, 987, 989, 990, 999, 1003, 1005, 1006, 1011, 1013, 1014
Offset: 1
Examples
For k = 255: A000120(255) = 8 = 2^3 is a cube, thus 255 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) type(surd(convert(convert(n,base,2),`+`),3),integer) end proc: select(filter, [$0..2000]); # Robert Israel, May 18 2025
-
Mathematica
Select[Range[0, 1200], IntegerQ[Surd[DigitCount[#, 2, 1], 3]] &] (* Amiram Eldar, Mar 05 2025 *)
-
PARI
isok(k) = ispower(hammingweight(k), 3); \\ Michel Marcus, Mar 05 2025
-
Python
from itertools import count, islice, combinations from sympy import integer_nthroot def A381720_gen(): # generator of terms a = [] yield 0 for l in count(1): b = 1<
A381720_list = list(islice(A381720_gen(),53)) # Chai Wah Wu, Mar 06 2025
Comments