A381750 Nonprime-powers k such that, for any prime p dividing k and m = 1+floor(log k/log p), rad(p^m (mod k)) divides k, where rad = A007947.
6, 12, 14, 24, 39, 56, 62, 112, 120, 155, 254, 992, 1984, 3279, 5219, 16256, 16382, 19607, 32512, 70643, 97655, 208919, 262142, 363023, 402233, 712979, 1040603, 1048574, 1508597, 2265383, 2391483, 4685519, 5207819, 6728903, 21243689, 25239899, 56328959, 61035155, 67100672
Offset: 1
Keywords
Examples
Table of a(n) for n = 1..10, showing prime decomposition (facs(a(n))), and S(n,p_x), where x = 1 denotes the smallest prime factor, x = 2, the second smallest prime factor, etc. Numbers in row n of A381799: n a(n) facs(a(n)) S(n,p_1) S(n,p_2) S(n,p_3) --------------------------------------------------------------------- 1 6 2 * 3 {1,2,4}, {1,3} 2 12 2^2 * 3 {1,2,4,8}, {1,3,9} 3 14 2 * 7 {1,2,4,8}, {1,7} 4 24 2^3 * 3 {1,2,4,8,16}, {1,3,9} 5 39 3 * 13 {1,3,9,27}, {1,13} 6 56 2^3 * 7 {1,2,4,8,16,32}, {1,7,49} 7 62 2 * 31 {1,2,4,8,16,32}, {1,31} 8 112 2^4 * 7 {1,2,4,8,16,32,64}, {1,7,49} 9 120 2^3 * 3 * 5 {1,2,4,8,16,32,64}, {1,3,9,27,81}, {1,5,25} 10 155 5 * 31 {1,5,25,125}, {1,31} . a(1) = 6, the smallest number that is not a prime power, since 2^3 mod 6 = 2, and 3^2 mod 6 = 3, both divide 6. 10 is not in the sequence since 2^4 mod 10 = 6, rad(6) does not divide 10. a(2) = 12 since 2^4 mod 12 = 4, rad(4) | 12, and 3^3 mod 12 = 3, rad(3) | 12. a(3) = 14 since 2^4 mod 14 = 2 and 7^2 mod 14 = 7, both divide 14. 15 is not in the sequence since 3^3 mod 15 = 12, rad(12) does not divide 15, etc.
Programs
-
Mathematica
nn = 10^5; Monitor[Reap[Do[ If[! PrimePowerQ[n], If[AllTrue[ Map[PowerMod[#, 1 + Floor@ Log[#, n], n] &, FactorInteger[n][[All, 1]] ], Divisible[n, rad[#]] &], Sow[n] ] ], {n, 2, nn}] ][[-1, 1]], n]
Comments