A381824 Odd cubefull numbers: odd numbers that are divisible by the cube of any of their prime factors.
1, 27, 81, 125, 243, 343, 625, 729, 1331, 2187, 2197, 2401, 3125, 3375, 4913, 6561, 6859, 9261, 10125, 12167, 14641, 15625, 16807, 16875, 19683, 24389, 27783, 28561, 29791, 30375, 35937, 42875, 50625, 50653, 59049, 59319, 64827, 68921, 78125, 79507, 83349, 83521, 84375, 91125
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Join[{1}, Select[Range[3, 10000, 2], Min[FactorInteger[#][[;; , 2]]] > 2 &]]
-
PARI
isok(k) = k == 1 || (k % 2 && vecmin(factor(k)[, 2]) > 2);
Formula
Sum_{n>=1} 1/a(n) = Product_{p prime >= 3} (1 + 1/(p^2*(p-1))) = (4/5) * A065483 = 1.07182732285947779727... .
Comments