cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A381826 G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x)^2), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 8, 41, 241, 1545, 10503, 74429, 543833, 4067510, 30985633, 239560975, 1874831287, 14823253892, 118222204539, 949963236834, 7683289712433, 62499664522578, 510992689465500, 4196824203859773, 34609480384100715, 286461380785102398, 2378954616256505177
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+1, k)*binomial(3*n-3*k, n-k))/(2*n+1);

Formula

a(n) = (1/(2*n+1)) * Sum_{k=0..n} binomial(2*n+1,k) * binomial(3*n-3*k,n-k).
D-finite with recurrence 12*n*(3*n+2)*(2*n+1)*(3*n+1)*a(n) +2*(-2365*n^4+2754*n^3-1799*n^2+834*n-144)*a(n-1) +2*(20215*n^4-89442*n^3+158117*n^2-135942*n+47592)*a(n-2) +(-181487*n^4+1469774*n^3-4524589*n^2+6309094*n-3370512)*a(n-3) +124*(n-3)*(2*n-7)*(1797*n^2-9448*n+12568)*a(n-4) -119164*(2*n-7)*(2*n-9)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Mar 10 2025
Showing 1-1 of 1 results.