cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A381818 Expansion of ( (1/x) * Series_Reversion( x * ((1-x) / C(x))^2 ) )^(1/2), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 12, 97, 903, 9129, 97419, 1080058, 12319200, 143630575, 1704099034, 20507897766, 249734145622, 3071587654688, 38102046141882, 476138815310364, 5988435287060671, 75745116484532586, 962898676577135634, 12295850972794555196, 157649023155654522723, 2028662477759375282902
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((serreverse(x*((1-x)*2*x/(1-sqrt(1-4*x)))^2)/x)^(1/2))

Formula

G.f. A(x) satisfies A(x) = C(x*A(x)^2) / (1 - x*A(x)^2).
a(n) = Sum_{k=0..n} binomial(2*n+2*k+1,k) * binomial(3*n-k,n-k)/(2*n+2*k+1).

A381828 Expansion of ( (1/x) * Series_Reversion( x * ((1-x) * (1-x+x^2))^2 ) )^(1/2).

Original entry on oeis.org

1, 2, 10, 65, 480, 3824, 32039, 278256, 2482578, 22617830, 209540672, 1968031520, 18696064179, 179332892186, 1734451272240, 16895744042472, 165621305486976, 1632518433458400, 16170959983623314, 160888256475481560, 1607061512154585046, 16110030923830784248
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((serreverse(x*((1-x)*(1-x+x^2))^2)/x)^(1/2))

Formula

G.f. A(x) satisfies A(x) = C(x*A(x)) / (1 - x*A(x)^2), where C(x) is the g.f. of A000108.
a(n) = Sum_{k=0..n} binomial(2*n+k+1,k) * binomial(3*n-2*k,n-k)/(2*n+k+1).
D-finite with recurrence +432*n*(n-1)*(n-2)*(2*n+1)*(2*n-1)*(2*n-3)*(262261060139434887136491*n -880264534325728808928710)*a(n) +24*(n-1)*(n-2)*(2*n-1)*(2*n-3)*(9441398165019655936913676*n^3 -1563359509176097527827297363*n^2 +8122005300033248841454135898*n -10005843136737488906545668303)*a(n-1) -8*(n-2)*(2*n-3)*(26904862014415612504704360259*n^5 -439294650192331167438487778367*n^4 +2462557164881954865201862193560*n^3 -6116391863054255517662202621591*n^2 +6730597164009721987374566778403*n -2508886036978141982914230533400)*a(n-2) +2*(3280856375160701992555505608813*n^7 -60505233834440544774094319915261*n^6 +458650706405377012453301766859297*n^5 -1843996542698657351167896639498197*n^4 +4199211312282774397146042070543498*n^3 -5283107978583820687249123910721062*n^2 +3195330463869279708956264243293272*n -571272270914692694572799416918200)*a(n-3) +3*(-10499174187769013704183946812135*n^7 +189831332911960443054698384732480*n^6 -1395267797131742288585801071743534*n^5 +5221938509132769354051685228032464*n^4 -9839826026184653630837080778918103*n^3 +6229383740555425356174546560814416*n^2 +6216439623275682391743799709941612*n -8390747283534155728971424365124320)*a(n-4) -112*(7*n-31)*(7*n-32) *(2094251874056865218841652*n -5622141652266976856940223)*(7*n-29)*(7*n-26) *(7*n-30)*(7*n-27)*a(n-5)=0. - R. J. Mathar, Mar 10 2025

A381830 G.f. A(x) satisfies A(x) = C(x*A(x)^2) / (1 - x*A(x)), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 10, 69, 558, 4946, 46506, 455587, 4599494, 47517909, 499933964, 5337957532, 57694565830, 630010984557, 6939976239376, 77027050722166, 860564349616694, 9670164031087137, 109221767288604000, 1239281689627682221, 14119315749935075540, 161460732437631678114
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(2*n, n-k)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(2*n,n-k)/(n+3*k+1).
Showing 1-3 of 3 results.