A381859 a(n) is the number of permutations that avoid 312 and 4321 and whose square avoids 321.
1, 1, 2, 5, 11, 23, 50, 109, 236, 511, 1108, 2402, 5206, 11284, 24459, 53016, 114914, 249081, 539894, 1170243, 2536551, 5498082, 11917326, 25831309, 55990457, 121361689, 263056605, 570186341, 1235903062, 2678872272, 5806569196, 12585984849, 27280655629
Offset: 0
Examples
The 11 permutations of length 4 are: 1234, 1243, 1324, 1342, 1432, 2134, 2143, 2314, 2341, 3214, 3421.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2977
- Kassie Archer and Noel Bourne, Pattern avoidance in compositions and powers of permutations, arXiv:2505.05218 [math.CO], 2025. See p. 8.
- Index entries for linear recurrences with constant coefficients, signature (2,0,1,0,-1).
Programs
-
Mathematica
CoefficientList[Series[(1 - x)/(1 - 2*x - x^3 + x^5), {x, 0, 32}], x] (* Michael De Vlieger, May 13 2025 *)
Formula
G.f.: (1-x)/(1-2*x-x^3+x^5).
a(n) = a(n-3) + a(n-4) + Sum_{j=0..n-1} a(j).