A381868 Starting from the n-th prime, a(n) is the minimum number > 1 of consecutive primes whose sum is the greater of a twin prime pair.
2, 137, 95, 3, 339, 93, 51, 5, 49, 5, 3, 115, 91, 35, 331, 7, 11, 3, 19, 29, 5, 187, 515, 15, 13, 79, 203, 11, 3, 69, 9, 93, 7, 13, 13, 5, 189, 71, 289, 419, 35, 239, 11, 9, 9, 33, 3, 129, 57, 75, 71, 53, 23, 121, 523, 13, 11, 3, 9, 11, 3, 193, 87, 5, 23, 181, 115, 3
Offset: 1
Keywords
Examples
a(4) = 3 because we need to add the primes 7, 11 and 13, to reach the greater of the twin prime pair (29 and 31).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(p) local t,q,i; t:= p; q:= p; for i from 2 do q:= nextprime(q); t:= t+q; if isprime(t) and isprime(t-2) then return i fi od end proc: seq(f(ithprime(i)),i=1..100); # Robert Israel, May 08 2025
-
PARI
a(n) = my(p=prime(n), s=p, nb=1); while (!isprime(s-2) || !isprime(s) || (nb==1), p=nextprime(p+1); s+=p; nb++); nb; \\ Michel Marcus, Apr 02 2025
-
Python
import sympy def a(n): p=sympy.prime(n); s=p; c=1 p=sympy.nextprime(p); s+=p; c+=1 while not(sympy.isprime(s-2) and sympy.isprime(s)):p=sympy.nextprime(p); s+=p; c+=1 return c