A381874 Numbers whose set of divisors can be partitioned: a) into two disjoint subsets with equal sums and cardinalities, and b) into two disjoint subsets with equal products and cardinalities.
24, 30, 42, 54, 60, 66, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 140, 150, 156, 160, 168, 174, 186, 198, 204, 210, 216, 220, 222, 224, 228, 240, 246, 258, 260, 264, 270, 276, 280, 282, 306, 308, 312, 318, 330, 336, 340, 342, 348, 352, 354, 360, 364, 366, 372, 378, 380, 384, 390, 402
Offset: 1
Keywords
Examples
Let D be the set of the divisors of 24, i.e. {1,2,3,4,6,8,12,24}. On the one hand (sums) D = {1,2,3,24} union {4,6,8,12}. On the other hand (products) D = {1,2,12,24} union {3,4,6,8}. So, 24 is a term.
Programs
-
Mathematica
sumQ[set_]:=AnyTrue[Subsets[set,{Length[set]/2}],(Plus@@#==Total[Complement[set,#]]&)]; prodQ[set_]:=AnyTrue[Subsets[set,{Length[set]/2}],(Times@@#==Times@@Complement[set,#]&)]; Select[Range[500],sumQ[Divisors[#]]&&prodQ[Divisors[#]]&]//Quiet
Comments