cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381888 Triangle read by rows: T(n, k) = (n + 1) * Sum_{j=k..n} binomial(n, j) * Eulerian1(j, j - k).

Original entry on oeis.org

1, 2, 2, 3, 9, 3, 4, 28, 28, 4, 5, 75, 165, 75, 5, 6, 186, 786, 786, 186, 6, 7, 441, 3311, 6181, 3311, 441, 7, 8, 1016, 12888, 40888, 40888, 12888, 1016, 8, 9, 2295, 47529, 241191, 404361, 241191, 47529, 2295, 9, 10, 5110, 168670, 1312750, 3445510, 3445510, 1312750, 168670, 5110, 10
Offset: 0

Views

Author

Peter Luschny, Mar 11 2025

Keywords

Comments

Consider A381706, the number of permutations of k chosen numbers in [n] with i-1 descents, as a sequence of squares of size 1x1, 2x2, 3x3, ..., as displayed in the example section of A381706. Conjecture: T(n, k) is the sum of column k+1 of the (n+1)th square; in other words: T(n, k) = Sum_{j=0..n} b(n+1, j+1, k+1).

Examples

			Triangle starts:
  [0] 1;
  [1] 2,    2;
  [2] 3,    9,     3;
  [3] 4,   28,    28,      4;
  [4] 5,   75,   165,     75,      5;
  [5] 6,  186,   786,    786,    186,      6;
  [6] 7,  441,  3311,   6181,   3311,    441,     7;
  [7] 8, 1016, 12888,  40888,  40888,  12888,  1016,    8;
  [8] 9, 2295, 47529, 241191, 404361, 241191, 47529, 2295, 9;
		

Crossrefs

Cf. A046802, A173018 (Eulerian1), A122045 (Euler), A058877 (column 1), A007526 (row sums), A381706 (generalized Eulerian).

Programs

  • Maple
    T := (n, k) -> (n + 1)*add(binomial(n, j)*combinat:-eulerian1(j, j - k), j = k .. n):
    for n from 0 to 8 do seq(T(n, k), k=0..n) od;
    # Using the e.g.f.:
    egf := ((y - 1)*(y*exp(x*y)*(x*y + 1) - (x + 1)*exp(x*(2*y - 1))))/(exp(x*(y - 1)) - y)^2:
    ser := simplify(series(egf, x, 10)):
    seq(seq(n!*coeff(coeff(ser, x, n), y, k), k = 0..n), n = 0..9);
  • SageMath
    # Using function eulerian1 from A173018.
    def T(n: int, k: int) -> int:
        return (n + 1) * sum(binomial(n, j) * eulerian1(j, j-k) for j in (k..n))
    def Trow(n) -> list[int]: return [T(n, k) for k in (0..n)]
    for n in (0..8): print(f"{n}: ", Trow(n))

Formula

T(n, k) = n! * [y^k] [x^n] ((y - 1)*(y*exp(x*y)*(x*y + 1) - (x + 1)*exp(x*(2*y - 1)))) / (exp(x*(y - 1)) - y)^2.
Sum_{k=0..n} (-1)^k * T(n, k) = (-1)^n * (n + 1) * Euler(n).
T(n, k) = (n + 1) * A046802(n, k).