cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381898 Decimal expansion of exp(Sum_{k>=2} log_2(k)/(k * 2^k)).

Original entry on oeis.org

1, 2, 8, 3, 3, 0, 3, 1, 7, 1, 1, 8, 7, 4, 0, 6, 8, 1, 9, 3, 9, 2, 7, 9, 8, 8, 5, 0, 8, 1, 6, 1, 7, 3, 9, 2, 0, 7, 7, 4, 1, 3, 2, 4, 0, 1, 8, 8, 3, 0, 2, 5, 4, 6, 1, 6, 0, 5, 9, 1, 0, 8, 2, 3, 0, 8, 4, 4, 0, 4, 3, 2, 1, 7, 6, 6, 1, 1, 0, 1, 3, 3, 5, 2, 6, 9, 4, 7, 9, 9, 2, 8, 4, 0, 8, 1, 5, 5, 6, 3, 9, 3, 7, 1, 0, 9, 7, 6, 6, 1, 5, 3, 8, 0, 7, 7, 9, 6, 4, 4
Offset: 1

Views

Author

Jwalin Bhatt, Mar 09 2025

Keywords

Comments

The geometric mean of the logarithmic distribution with parameter value 1/2 (A381900) approaches this constant. In general, for parameter value p, it approaches exp(PolyLog'(1,p)/log(1-p)).

Examples

			1.2833031711874068193927988...
		

Crossrefs

Programs

  • Mathematica
    N[Exp [Sum[Log2[i]/(i*2^i), {i, 2, Infinity}]], 120]
    N[Exp[-Derivative[1, 0][PolyLog][1, 1/2]/Log[2]], 120]
  • Python
    from mpmath import polylog, diff, exp, log, mp
    mp.dps = 120
    const = exp(-diff(lambda n: polylog(n, 1/2), 1)/log(2))
    A381898 = [int(d) for d in mp.nstr(const, n=mp.dps)[:-1] if d != '.']

Formula

Equals exp(-PolyLog'(1,1/2)/log(2)), where PolyLog'(x,y) represents the derivative of the polylogarithm w.r.t. x.
From Jwalin Bhatt, May 07 2025: (Start)
Equals exp(Sum_{k>=2} log_2(k)/(k*2^k)).
Equals (Product_{k>=2} k^(1/(k*2^k))) ^ (1/log(2)). (End)

Extensions

a(120) corrected by Sean A. Irvine, Apr 14 2025