cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381901 Partition the natural numbers by letting a(1)=1 (denoting the set {1}) and for n>1 define a(n) to be the least integer such that the product of the set of integers {a(n-1)+1,...,a(n)} is an integer multiple of the previous partition's product.

Original entry on oeis.org

1, 2, 4, 8, 14, 26, 46, 86, 166, 326, 634, 1262, 2518, 5006, 10006, 19946, 39874, 79738, 159398, 318778, 637502, 1274998, 2549978, 5099902, 10199786, 20399534, 40799062, 81598082, 163196134, 326392258, 652784498, 1305568942, 2611137838, 5222275634, 10444551254
Offset: 1

Views

Author

Andy Niedermaier, Mar 09 2025

Keywords

Examples

			The first few corresponding partitions are {1}, {2}, {3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12, 13, 14}.
		

Crossrefs

Appears to agree with A113117 starting at the 5th term and with A113118 starting at the 6th term.

Formula

a(n) = A090905(n+1) - 1.
a(n) = 2 * A006992(n-1) for n>=5.