cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381906 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * B(x)) ), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 3, 15, 100, 787, 6848, 63583, 617350, 6191888, 63650430, 667043379, 7099806346, 76538663840, 833975952491, 9169925032189, 101616966476850, 1133736002540882, 12724529836447420, 143567856744995568, 1627454706916166076, 18526192807286106198, 211694470334287787868
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(2*n+2, n-k)/(n+3*k+1));

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x))^2 * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(2*n+2,n-k)/(n+3*k+1).

A381907 Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 * B(x)) ), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 4, 25, 197, 1783, 17646, 185622, 2039617, 23149542, 269367631, 3196544816, 38539697456, 470773651286, 5813914938293, 72470441063067, 910587733474165, 11521140613913305, 146659482494039073, 1876975898990490298, 24137070792680577688, 311724732112458291945
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(3*n+3, n-k)/(n+3*k+1));

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x))^3 * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(3*n+3,n-k)/(n+3*k+1).
Showing 1-2 of 2 results.