A381906 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * B(x)) ), where B(x) is the g.f. of A001764.
1, 3, 15, 100, 787, 6848, 63583, 617350, 6191888, 63650430, 667043379, 7099806346, 76538663840, 833975952491, 9169925032189, 101616966476850, 1133736002540882, 12724529836447420, 143567856744995568, 1627454706916166076, 18526192807286106198, 211694470334287787868
Offset: 0
Keywords
Programs
-
PARI
a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(2*n+2, n-k)/(n+3*k+1));
Formula
G.f. A(x) satisfies A(x) = (1 + x*A(x))^2 * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(2*n+2,n-k)/(n+3*k+1).