cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A381911 Expansion of (1/x) * Series_Reversion( x * (1-x) / B(x) ), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 2, 9, 55, 394, 3102, 25969, 226891, 2045342, 18883205, 177640462, 1696658418, 16408796013, 160366113609, 1581329919636, 15713344659359, 157187582466527, 1581676730708500, 15998326150898211, 162571286470135097, 1658893916098102321, 16991130941208846890
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n + 3*k + 1, k] * Binomial[2*n - k, n - k]/(n + 3*k + 1), {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 22 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(2*n-k, n-k)/(n+3*k+1));

Formula

G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(2*n-k,n-k)/(n+3*k+1).

A381913 Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / B(x) ), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 4, 28, 245, 2422, 25860, 291106, 3405405, 41014131, 505344113, 6341182427, 80768735045, 1041645452650, 13575670575944, 178528253213469, 2366073408348545, 31571528771106126, 423794981085407622, 5718929869862880055, 77539914280883389432, 1055790501909183080512
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(4*n-k+2, n-k)/(n+3*k+1));

Formula

G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x*A(x))^3.
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(4*n-k+2,n-k)/(n+3*k+1).

A381915 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / B(x) ), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 3, 18, 145, 1378, 14515, 163700, 1936414, 23716654, 298216851, 3827542585, 49938733635, 660366743580, 8830549084588, 119205253249287, 1622258295003714, 22232669093660250, 306569446979862205, 4250285556933578693, 59210418891925845529, 828417259759216617257
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(3*n-k+1, n-k)/(n+4*k+1));

Formula

G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x*A(x))^2.
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(3*n-k+1,n-k)/(n+4*k+1).
Showing 1-3 of 3 results.