A381913 Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / B(x) ), where B(x) is the g.f. of A001764.
1, 4, 28, 245, 2422, 25860, 291106, 3405405, 41014131, 505344113, 6341182427, 80768735045, 1041645452650, 13575670575944, 178528253213469, 2366073408348545, 31571528771106126, 423794981085407622, 5718929869862880055, 77539914280883389432, 1055790501909183080512
Offset: 0
Keywords
Programs
-
PARI
a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(4*n-k+2, n-k)/(n+3*k+1));
Formula
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x*A(x))^3.
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(4*n-k+2,n-k)/(n+3*k+1).