A381931 Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*A381932(n, k)/T(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.
2, 4, 12, 8, 48, 48, 16, 144, 24, 180, 32, 1152, 1728, 5760, 8640, 64, 640, 3456, 5760, 17280, 6720, 128, 7680, 34560, 1152, 34560, 32256, 241920, 256, 26880, 82944, 414720, 41472, 580608, 107520, 1451520, 512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600
Offset: 1
Examples
Triangle T(n, k) begins: [1] 2; [2] 4, 12; [3] 8, 48, 48; [4] 16, 144, 24, 180; [5] 32, 1152, 1728, 5760, 8640; [6] 64, 640, 3456, 5760, 17280, 6720; [7] 128, 7680, 34560, 1152, 34560, 32256, 241920; [8] 256, 26880, 82944, 414720, 41472, 580608, 107520, 1451520; [9] 512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600; . F^{r}(x) = x + x^2*1/2*r + x^3*(1/4*r^2 - 1/12*r) + x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r) + x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r) + x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r) + ... .
Links
Crossrefs
Programs
-
PARI
c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)} row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, denominator(polcoeff(p, n-k+1)));
Formula
T(n, 1) = 2^n.
T(n, n) = denominator(A180609(n)/(n!*(n+1)!)).
Comments