cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381931 Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*A381932(n, k)/T(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.

Original entry on oeis.org

2, 4, 12, 8, 48, 48, 16, 144, 24, 180, 32, 1152, 1728, 5760, 8640, 64, 640, 3456, 5760, 17280, 6720, 128, 7680, 34560, 1152, 34560, 32256, 241920, 256, 26880, 82944, 414720, 41472, 580608, 107520, 1451520, 512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600
Offset: 1

Views

Author

Thomas Scheuerle, Mar 10 2025

Keywords

Comments

This is the main entry for this sequence of fractions.
Convergence and analytic continuation of this series representation are interesting research topics with many unsolved problems and open questions.
Evaluating the polynomial of row n P(x) = Sum_{k=1..n} x^(n+1-k)*A381932(n, k)/T(n, k) gives A144150(n+1, x-1)/(n+1)!.

Examples

			Triangle T(n, k) begins:
[1]  2;
[2]  4,   12;
[3]  8,   48,     48;
[4]  16,  144,    24,     180;
[5]  32,  1152,   1728,   5760,   8640;
[6]  64,  640,    3456,   5760,   17280,   6720;
[7]  128, 7680,   34560,  1152,   34560,   32256,   241920;
[8]  256, 26880,  82944,  414720, 41472,   580608,  107520,   1451520;
[9]  512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
		

Crossrefs

Programs

  • PARI
    c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
    row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, denominator(polcoeff(p, n-k+1)));

Formula

T(n, 1) = 2^n.
T(n, n) = denominator(A180609(n)/(n!*(n+1)!)).