A381932 Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*T(n, k)/A381931(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.
1, 1, -1, 1, -5, 1, 1, -13, 1, -1, 1, -77, 89, -91, 11, 1, -29, 175, -149, 91, -1, 1, -223, 1501, -37, 391, -43, -11, 1, -481, 2821, -13943, 725, -2357, 17, 29, 1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493, 1, -4861, 89993, -933293, 399637, -1061231, 2035739, -8189, 4897, -2711
Offset: 1
Examples
Triangle T(n, k) begins: [1] 1; [2] 1, -1; [3] 1, -5, 1; [4] 1, -13, 1, -1; [5] 1, -77, 89, -91, 11; [6] 1, -29, 175, -149, 91, -1; [7] 1, -223, 1501, -37, 391, -43, -11; [8] 1, -481, 2821, -13943, 725, -2357, 17, 29; [9] 1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493; . F^{r}(x) = x + x^2*1/2*r + x^3*(1/4*r^2 - 1/12*r) + x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r) + x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r) + x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r) + ... .
Crossrefs
Programs
-
PARI
c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)} row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, numerator(polcoeff(p, n-k+1)));
Comments