A381949 a(n) is the smallest integer k greater than 1 and not a perfect power satisfying A373387(k^n) = n.
2, 7, 55, 5, 95, 95, 385, 95, 1535, 1535, 6145, 1025, 24575, 24575, 98305, 4095, 393215, 393215, 1572865, 262145, 6291455, 6291455, 25165825, 6291455, 100663295, 100663295, 402653185, 67108865, 1610612735, 1610612735, 6442450945, 402653185, 25769803775, 25769803775
Offset: 1
Examples
a(3) = 55 since 5*11 is not a perfect power and A373387(55^3) = 3.
Links
- Math Overflow, Closed form for the general term of 2, 49, 15625, 625, ....
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43—61.
- Marco Ripà, Twelve Python Programs to Help Readers Test Peculiar Properties of Integer Tetration, ResearchGate, 2024.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441—457.
- Wikipedia, Tetration.
Comments