A381981 Number of compositions of n avoiding the patterns (1,2,3) and (3,2,1).
1, 1, 2, 4, 8, 16, 30, 56, 100, 173, 293, 482, 779, 1232, 1928, 2972, 4546, 6894, 10435, 15705, 23692, 35679, 53976, 81760, 124611, 190404, 292871, 452070, 702042, 1094034, 1713879, 2693284, 4250165, 6724535, 10673794, 16977795, 27070285, 43232232, 69167372
Offset: 0
Keywords
Examples
For n < 6 all compositions are counted. For n = 6 and 7, the compositions that match either of the forbidden patterns are shown below: n=6 2 compositions match: (1,2,3) and (3,2,1), giving a(6) = 2^5 - 2 = 30; n=7 8 compositions match: (1,1,2,3), (1,2,1,3), (1,2,3,1), (1,3,2,1), (3,1,2,1), (3,2,1,1), (1,2,4), and (4,2,1), giving a(7) = 2^6 - 8 = 56.
Programs
-
PARI
A(i,j,k) = {2*x^((i+j)*k)/((1-x^i)^k * (1-x^j)^k)} B(i,j,k) = {x^(((i+j)*k)+i)/((1-x^i)^(k+1) * (1-x^j)^k)} C(i,j,k) = {x^(((i+j)*k)+j)/((1-x^i)^k * (1-x^j)^(k+1))} C_x(N) = {my(x='x+O('x^N), h=1+sum(i=1,N,(x^i)/(1-x^i))+sum(i=1,N,sum(j=i+1,N-i,sum(k=1,N-i-j, (A(i,j,k)+B(i,j,k)+C(i,j,k))*(1+sum(u=i+1,j-1,-1+1/(1-x^u)^2+2*sum(v=u+1,j-1, x^(u+v)/((1-x^u)*(1-x^v))))))))); Vec(h)} C_x(40)
Formula
G.f.: 1 + Sum_{i>0} (x^i/(1-x^i)) + Sum_{i>0} ( Sum_{j>i} ( Sum_{k>0} ( (A(i,j,k) + B(i,j,k) + C(i,j,k))*(1 + Sum_{u=i+1..j-1} (-1 + 1/(1-x^u)^2 + 2*Sum_{v=u+1..j-1} ( x^(u+v)/((1-x^u)*(1-x^v)) ) ) ) ) ) ), where A(x,i,j,k) = 2*x^((i+j)*k)/((1-x^i)^k * (1-x^j)^k), B(x,i,j,k) = x^(((i+j)*k)+i)/((1-x^i)^(k+1) * (1-x^j)^k), and C(x,i,j,k) = x^(((j+i)*k)+j)/((1-x^i)^k * (1-x^j)^(k+1)).
Comments