A381992 Number of integer partitions of n that can be partitioned into sets with distinct sums.
1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 170, 217, 282, 360, 449, 571, 719, 899, 1122, 1391, 1727, 2136, 2616, 3209, 3947, 4800, 5845, 7094, 8602, 10408, 12533, 15062, 18107, 21686, 25956, 30967, 36936, 43897, 52132, 61850, 73157, 86466, 101992, 120195
Offset: 0
Keywords
Examples
There are 6 ways to partition (3,2,2,1) into sets: {{2},{1,2,3}} {{1,2},{2,3}} {{1},{2},{2,3}} {{2},{2},{1,3}} {{2},{3},{1,2}} {{1},{2},{2},{3}} Of these, 3 have distinct block sums: {{2},{1,2,3}} {{1,2},{2,3}} {{1},{2},{2,3}} so (3,2,2,1) is counted under a(8). The a(1) = 1 through a(8) = 13 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (2,1) (3,1) (3,2) (4,2) (4,3) (5,3) (2,1,1) (4,1) (5,1) (5,2) (6,2) (2,2,1) (3,2,1) (6,1) (7,1) (3,1,1) (4,1,1) (3,2,2) (3,3,2) (2,2,1,1) (3,3,1) (4,2,2) (4,2,1) (4,3,1) (5,1,1) (5,2,1) (3,2,1,1) (6,1,1) (3,2,2,1) (3,3,1,1) (4,2,1,1) (3,2,1,1,1)
Crossrefs
Twice-partitions of this type are counted by A279785.
These partitions are ranked by A382075.
For a unique choice we have A382079.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
A382201 lists MM-numbers of sets with distinct sums.
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#], And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,10}]
Extensions
a(21)-a(50) from Bert Dobbelaere, Mar 29 2025
Comments