A381993 Number of integer partitions of n that cannot be partitioned into constant multisets with a common sum.
0, 0, 0, 1, 1, 5, 4, 13, 13, 25, 33, 54, 54, 99, 124, 166, 207, 295, 352, 488, 591, 780, 987, 1253, 1488, 1951, 2419, 2993, 3665, 4563, 5508, 6840, 8270, 10127, 12289, 14869, 17781, 21635, 25992, 31167, 37184, 44581, 53008, 63259, 75076, 89080, 105531, 124752, 146842, 173516, 204141, 239921, 281461, 329929, 385852
Offset: 0
Keywords
Examples
The multiset partition {{2},{2},{1,1},{1,1}} has both properties (constant blocks and common sum), so (2,2,1,1,1,1) is not counted under a(8). We can also use {{2,2},{1,1,1,1}}. The a(3) = 1 through a(8) = 13 partitions: (21) (31) (32) (42) (43) (53) (41) (51) (52) (62) (221) (321) (61) (71) (311) (411) (322) (332) (2111) (331) (431) (421) (521) (511) (611) (2221) (3221) (3211) (3311) (4111) (4211) (22111) (5111) (31111) (32111) (211111) (311111)
Crossrefs
Programs
-
Mathematica
mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}]; Table[Length[Select[IntegerPartitions[n],Length[Select[Join@@@Tuples[mce/@Split[#]],SameQ@@Total/@#&]]==0&]],{n,0,30}]
Extensions
a(31)-a(54) from Robert Price, Mar 31 2025