A381997 E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^4.
1, 1, 12, 240, 7328, 303400, 15904032, 1010252320, 75442821120, 6478112692224, 628915387166720, 68121797696449024, 8144844724723482624, 1065508614975814537216, 151392999512027274215424, 23217165210450099377479680, 3822334349865128121165283328, 672407573328393115218009063424
Offset: 0
Keywords
Programs
-
Maple
A381997 := proc(n) n!*add((2*k)^(n-k)*binomial(4*k+1,k)/(4*k+1)/(n-k)!,k=0..n) ; end proc: seq(A381997(n),n=0..60) ; # R. J. Mathar, Mar 12 2025
-
PARI
a(n) = n!*sum(k=0, n, (2*k)^(n-k)*binomial(4*k+1, k)/((4*k+1)*(n-k)!));
Formula
a(n) = n! * Sum_{k=0..n} (2*k)^(n-k) * A002293(k)/(n-k)!.
a(n) ~ 2^(n+1) * n^(n-1) * sqrt(1 + LambertW(27/128)) / (3^(3/2) * exp(n) * LambertW(27/128)^n). - Vaclav Kotesovec, Mar 22 2025