cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A382031 E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x)^2)), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 3, 43, 1177, 46681, 2419291, 154587427, 11735209585, 1031418915121, 102979800567091, 11510663862332251, 1423811747933017609, 193073662118499898633, 28479005472094048953355, 4539456019668776334683731, 777538096585429376795405281, 142419954152382631361835929185
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, n!*sum(k=0, n-1, (2*k+1)^(n-k-1)*binomial(n+3*k, k)/((n+3*k)*(n-k-1)!)));

Formula

Let F(x) be the e.g.f. of A382044. F(x) = log(A(x))/x = B(x*A(x)^2).
a(n) = n! * Sum_{k=0..n-1} (2*k+1)^(n-k-1) * binomial(n+3*k,k)/((n+3*k) * (n-k-1)!) for n > 0.

A382015 E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 3, 31, 589, 16121, 574621, 25206595, 1312188249, 79030103185, 5404390242841, 413597889825011, 35018686148243029, 3249772250267517001, 327996955065621786309, 35769289851588288786211, 4191277822883571632163121, 525144087149768803822788257, 70060367710090279786176259633
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, n!*sum(k=0, n-1, (k+1)^(n-k-1)*binomial(n+2*k, k)/((n+2*k)*(n-k-1)!)));

Formula

a(n) = n! * Sum_{k=0..n-1} (k+1)^(n-k-1) * binomial(n+2*k,k)/((n+2*k) * (n-k-1)!) for n > 0.
Showing 1-2 of 2 results.