A382053 Numbers k such that Fibonacci(k) has a Fibonacci number of 1's in its binary representation.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 19, 20, 22, 30, 33, 46, 47, 56, 85, 105, 109, 150, 173, 254, 266, 279, 413, 416, 444, 624, 651, 690, 713, 746, 1031, 1110, 2841, 2864, 2867, 2892, 2895, 2994, 4516, 4523, 4543, 4559, 7452, 7491, 7532, 11840, 11852, 11863, 19297, 19311, 19442, 19462
Offset: 1
Examples
a(11) = 10 is a term because Fibonacci(10) = 55 = 110111_2 has 5 1's in its binary representation, and 5 = Fibonacci(5) is a Fibonacci number.
Programs
-
Maple
isfib:= n -> issqr(5*n^2+4) or issqr(5*n^2-4); filter:= n -> isfib(convert(convert(combinat:-fibonacci(n),base,2),`+`)): select(filter, [$0..20000]);
-
Mathematica
Select[Range[0,20000],ResourceFunction["FibonacciQ"][Total[IntegerDigits[Fibonacci[#],2]]]&] (* or if ResourceFunction Add-on is not available *) Select[Range[0, 20000],AnyTrue[Sqrt[5 #^2 + 4 {-1, 1}] &[DigitSum[Fibonacci[#], 2]],IntegerQ] &] (* James C. McMahon, Mar 14 2025 *)
Comments