cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381704 Fibonacci numbers having a Fibonacci number of 1's in their binary representation.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 144, 233, 987, 4181, 6765, 17711, 832040, 3524578, 1836311903, 2971215073, 225851433717, 259695496911122585, 3928413764606871165730, 26925748508234281076009, 9969216677189303386214405760200, 638817435613190341905763972389505493
Offset: 1

Views

Author

Ctibor O. Zizka, Mar 04 2025

Keywords

Examples

			F(10) = (55)_10 = (110111)_2 has five 1's in binary, 5 is a Fibonacci number, thus 55 is a term.
F(12) = (144)_10 = (10010000)_2 has two 1's in binary, 2 is a Fibonacci number, thus 144 is a term.
		

Crossrefs

Programs

  • Maple
    isfib:= n -> issqr(5*n^2+4) or issqr(5*n^2-4):
    select(n -> isfib(convert(convert(n,base,2),`+`)), map(combinat:-fibonacci,[0,$2..1000])); # Robert Israel, Mar 13 2025
  • Mathematica
    With[{f = Fibonacci[Range[0, 200]]}, DeleteDuplicates[Select[f, MemberQ[f, DigitCount[#, 2, 1]] &]]] (* Amiram Eldar, Mar 04 2025 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); \\ A010056
    lista(nn) = for (n=2, nn, my(f = fibonacci(n)); if (isfib(hammingweight(f)), print1(f, ", "));); \\ Michel Marcus, Mar 04 2025

Extensions

a(1) = 0 inserted by Robert Israel, Mar 13 2025

A383045 Integers k for which the sum of digits of Fibonacci(k) is a Fibonacci number.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 13, 28, 33, 49, 85, 94, 107, 286, 299, 366, 421, 422, 443, 657, 2807, 4483, 4531, 18694, 49140, 79033, 79850, 80290, 128306, 129049, 129618, 208245, 338888, 546571, 882766, 883822, 886342
Offset: 1

Views

Author

Michel Marcus, Apr 14 2025

Keywords

Examples

			Fibonacci(8) = 21 and sumdigits(21) = 3, a Fibonacci number, so 8 is a term.
		

Crossrefs

Programs

  • Maple
    q:= n-> (t-> issqr(t+4) or issqr(t-4))(5*add(i, i=convert(combinat[fibonacci](n), base, 10))^2):
    select(q, [$0..4600])[];  # Alois P. Heinz, Jul 15 2025
  • Mathematica
    fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; Select[Range[0, 1000], fibQ[DigitSum[Fibonacci[#]]] &] (* Amiram Eldar, Apr 14 2025 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    isok(k) = isfib(sumdigits(fibonacci(k)));

Extensions

a(36)-a(39) from Amiram Eldar, Apr 14 2025
Showing 1-2 of 2 results.