A382074 a(n) is the number of solutions to phi(x) + phi(n-x) = phi(n) where 1 <= x <= floor(n/2).
0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 2, 2, 1, 0, 1, 0, 3, 2, 2, 0, 2, 2, 2, 2, 4, 0, 0, 0, 1, 3, 1, 1, 2, 0, 3, 1, 4, 0, 1, 0, 5, 3, 2, 0, 2, 0, 2, 3, 5, 0, 2, 1, 5, 2, 1, 0, 1, 0, 2, 2, 1, 2, 2, 0, 5, 2, 2, 0, 3, 0, 2, 4, 5, 1, 3, 0, 4, 0, 1, 0, 2, 2, 2, 4, 5
Offset: 1
Keywords
Examples
a(20) = 3 because phi(x) + phi(20-x) = phi(20) has 3 solutions for 0 <= x <= 10: x = 6: phi(6) + phi(14) = 2 + 6 = 8 = phi(20). x = 8: phi(8) + phi(12) = 4 + 4 = 8 = phi(20). x = 10: phi(10) + phi(10) = 4 + 4 = 8 = phi(20).
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(NumberTheory): A382074:=proc(n) local a,x; a:=0; for x to n/2 do if phi(x)+phi(n-x)=phi(n) then a:=a+1 fi od; return a end proc; seq(A382074(n),n=1..88);
-
PARI
a(n) = my(e=eulerphi(n)); sum(x=1, n\2, eulerphi(x) + eulerphi(n-x) == e); \\ Michel Marcus, Mar 22 2025
Formula
a(p) = 0 for primes p != 3.
a(2^k*(2*m-1)) > 0 for integers k, m where k > 1 and m > 0.
Conjecture: a(2*A065381(n)) = 0 for n > 1.
Comments