A382078 Number of integer partitions of n that cannot be partitioned into a set of sets.
0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 126, 168, 207, 266, 343, 428, 534, 675, 832, 1039, 1279, 1575, 1933, 2381, 2881, 3524, 4269, 5179, 6237, 7525, 9033, 10860, 12969, 15512, 18475, 22005, 26105, 30973, 36642, 43325, 51078, 60184, 70769, 83152
Offset: 0
Keywords
Examples
The partition y = (2,2,1,1,1) can be partitioned into sets in the following ways: {{1},{1,2},{1,2}} {{1},{1},{2},{1,2}} {{1},{1},{1},{2},{2}} But none of these is itself a set, so y is counted under a(7). The a(2) = 1 through a(8) = 9 partitions: (11) (111) (22) (2111) (33) (2221) (44) (1111) (11111) (222) (4111) (2222) (3111) (22111) (5111) (21111) (31111) (22211) (111111) (211111) (41111) (1111111) (221111) (311111) (2111111) (11111111)
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]==0&]],{n,0,9}]
Extensions
a(19)-a(50) from Bert Dobbelaere, Mar 29 2025
Comments