A382079 Number of integer partitions of n that can be partitioned into a set of sets in exactly one way.
1, 1, 1, 1, 2, 3, 3, 4, 6, 5, 10, 9, 13, 14, 21, 20, 32, 31, 42, 47, 63, 62, 90, 94, 117, 138, 170, 186, 235, 260, 315, 363, 429, 493, 588, 674, 795, 901, 1060, 1209, 1431, 1608, 1896, 2152, 2515, 2854, 3310, 3734, 4368, 4905, 5686
Offset: 0
Examples
The unique multiset partition for (3222111) is {{1},{2},{1,2},{1,2,3}}. The a(1) = 1 through a(12) = 13 partitions: 1 2 3 4 5 6 7 8 9 A B C 211 221 411 322 332 441 433 443 552 311 2211 331 422 522 442 533 633 511 611 711 622 551 822 3311 42111 811 722 A11 32111 3322 911 4422 4411 42221 5511 32221 53111 33321 43111 62111 52221 52111 54111 63111 72111 3222111
Crossrefs
Programs
-
Mathematica
ssfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[ssfacs[n/d],Min@@#>d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]; Table[Length[Select[IntegerPartitions[n],Length[ssfacs[Times@@Prime/@#]]==1&]],{n,0,15}]
Extensions
a(21)-a(50) from Bert Dobbelaere, Mar 29 2025