cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382104 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372268.

Original entry on oeis.org

6, 5, 2, 1, 4, 5, 1, 5, 4, 8, 6, 2, 5, 4, 6, 1, 4, 2, 6, 2, 6, 9, 3, 6, 0, 5, 0, 7, 7, 8, 0, 0, 0, 5, 9, 2, 7, 6, 4, 6, 5, 1, 3, 0, 4, 1, 6, 6, 1, 0, 6, 4, 5, 9, 5, 0, 7, 4, 7, 0, 6, 8, 0, 4, 8, 1, 2, 4, 8, 1, 3, 2, 5, 3, 4, 0, 8, 9, 6, 4, 8, 2, 7, 8, 0, 1, 6
Offset: 0

Views

Author

A.H.M. Smeets, Mar 15 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
4 | A372267, A372268 | A382103, this sequence

Examples

			0.65214515486254614262693605077800059276465130416610645...
		

Crossrefs

Cf. A372268.

Programs

  • Mathematica
    RealDigits[1/2 + Sqrt[5/6]/6, 10, 120][[1]] (* Amiram Eldar, Mar 24 2025 *)
  • PARI
    1/2 + (1/6)*sqrt(5/6) \\ Stefano Spezia, May 22 2025

Formula

Equals 1/2 + (1/6)*sqrt(5/6).
Minimal polynomial: 216*x^2 - 216*x + 49. - Stefano Spezia, May 22 2025