cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A381864 Numbers k in A024619 such that p^(m+1) == r (mod k) where r is also in A024619 for all p | n.

Original entry on oeis.org

15, 33, 35, 44, 45, 51, 63, 65, 66, 69, 70, 75, 76, 77, 80, 85, 87, 88, 90, 91, 92, 95, 99, 102, 104, 105, 115, 119, 123, 130, 133, 135, 138, 140, 141, 143, 144, 145, 152, 153, 154, 159, 160, 161, 170, 172, 174, 175, 176, 177, 180, 184, 185, 187, 188, 189, 190
Offset: 1

Views

Author

Michael De Vlieger, Apr 06 2025

Keywords

Comments

This sequence intersects neither A381750 nor A382120.

Examples

			Table of a(n) for n = 1..12, showing prime decomposition (facs(a(n))), p_x^(m+1) mod n, where x = 1 denotes the smallest prime factor, x = 2, the second smallest prime factor, etc. Brackets appear around residues that are not prime powers.
                       p_x^(m+1) mod n
 n  a(n)  facs(a(n))   p_1   p_2   p_3
-----------------------------------------
 1   15   3 * 5        12    10
 2   33   3 * 11       15    22
 3   35   5 * 7        20    14
 4   44   2^2 * 11     20    33
 5   45   3^2 * 5      36    35
 6   51   3 * 17       30    34
 7   63   3^2 * 7      18    28
 8   65   5 * 13       60    39
 9   66   2 * 3 * 11   62    15    55
10   69   3 * 23       12    46
11   70   2 * 5 * 7    58    55    63
12   75   3 * 5^2       6    50
		

Crossrefs

Programs

  • Mathematica
    nn = 190, Reap[Do[If[! PrimePowerQ[n], If[NoneTrue[Map[PowerMod[#, 1 + Floor@ Log[#, n], n] &, FactorInteger[n][[All, 1]] ], PrimePowerQ], Sow[n]]], {n, 2, nn}] ][[-1, 1]]
Showing 1-1 of 1 results.