cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A383377 G.f. satisfies A(x) = Sum_{n>=0} x^n * abs(1/A(x)^n), where abs(F(x)) equals the series expansion formed by the unsigned coefficients in F(x).

Original entry on oeis.org

1, 1, 2, 4, 6, 6, 20, 46, 92, 138, 276, 676, 1476, 3332, 5670, 11574, 27262, 61952, 135354, 222848, 549226, 1319282, 3068894, 6449978, 10987080, 27779594, 67311236, 157054012, 313271538, 579149708, 1452091208, 3548249288, 7866783754, 16098393372, 32442930610, 78084645030, 180671169756
Offset: 0

Views

Author

Paul D. Hanna, May 15 2025

Keywords

Comments

Compare to C(x) = Sum_{n>=0} x^n * C(x)^n, where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
Conjecture: a(n) is even for n > 1.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + 6*x^5 + 20*x^6 + 46*x^7 + 92*x^8 + 138*x^9 + 276*x^10 + 676*x^11 + 1476*x^12 + ...
The coefficients in 1/A(x)^n begin
  n = 1: [1, -1, -1, -1,  1,   5,  -11,  -17, ...];
  n = 2: [1, -2, -1,  0,  5,  10,  -33,  -24, ...];
  n = 3: [1, -3,  0,  2,  9,   9,  -70,   -6, ...];
  n = 4: [1, -4,  2,  4, 11,   0, -116,   64, ...];
  n = 5: [1, -5,  5,  5, 10, -16, -160,  210, ...];
  n = 6: [1, -6,  9,  4,  6, -36, -190,  444, ...];
  n = 7: [1, -7, 14,  0,  0, -56, -196,  762, ...];
  n = 8: [1, -8, 20, -8, -6, -72, -172, 1144, ...];
  ...
The table of unsigned coefficients that form the series abs(1/A(x)^n) begins
  n = 0: [1,  0,  0,  0,  0,  0,   0,    0,    0,    0, ...];
  n = 1: [1,  1,  1,  1,  1,  5,  11,   17,    7,   69, ...];
  n = 2: [1,  2,  1,  0,  5, 10,  33,   24,   33,  218, ...];
  n = 3: [1,  3,  0,  2,  9,  9,  70,    6,  123,  377, ...];
  n = 4: [1,  4,  2,  4, 11,  0, 116,   64,  253,  452, ...];
  n = 5: [1,  5,  5,  5, 10, 16, 160,  210,  375,  325, ...];
  n = 6: [1,  6,  9,  4,  6, 36, 190,  444,  399,  102, ...];
  n = 7: [1,  7, 14,  0,  0, 56, 196,  762,  203,  847, ...];
  n = 8: [1,  8, 20,  8,  6, 72, 172, 1144,  349, 1792, ...];
  n = 9: [1,  9, 27, 21,  9, 81, 117, 1557, 1386, 2644, ...];
  n =10: [1, 10, 35, 40,  5, 82,  35, 1960, 3010, 2920, ...];
  ...
in which the antidiagonal sums equal this sequence
  a(0) = 1 = 1;
  a(1) = 0 + 1 = 1;
  a(2) = 0 + 1 + 1 = 2;
  a(3) = 0 + 1 + 2 + 1 = 4;
  a(4) = 0 + 1 + 1 + 3 + 1 = 6;
  a(5) = 0 + 1 + 0 + 0 + 4 + 1 = 6;
  a(6) = 0 + 5 + 5 + 2 + 2 + 5 + 1 = 20;
  a(7) = 0 + 11 + 10 + 9 + 4 + 5 + 6 + 1 = 46;
  a(8) = 0 + 17 + 33 + 9 + 11 + 5 + 9 + 7 + 1 = 92;
  a(9) = 0 + 7 + 24 + 70 + 0 + 10 + 4 + 14 + 8 + 1 = 138;
  a(10) = 0 + 69 + 33 + 6 + 116 + 16 + 6 + 0 + 20 + 9 + 1 = 276;
  ...
illustrating a(n) = Sum_{k=0..n} abs( [x^(n-k)] 1/A(x)^k ) for n >= 0.
		

Crossrefs

Cf. A382122.

Programs

  • PARI
    {a(n) = my(V=[1], A);
    for(i=1,n, V = concat(V,0); A = Ser(V);
    V[#V] = -polcoef(truncate(A) - 1 - sum(m=1,#V+1, x^m * Ser(abs(Vec( 1/A^m ))) ),#V-1) );V[n+1]}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = Sum_{n>=0} x^n * abs( 1/A(x)^n ).
(2) a(n) = Sum_{k=0..n} abs( [x^k] 1/A(x)^(n-k) ) for n >= 0.
Showing 1-1 of 1 results.