cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A145875 Repdigit Kaprekar numbers.

Original entry on oeis.org

1, 9, 55, 99, 999, 7777, 9999, 22222, 99999, 999999, 4444444, 9999999, 88888888, 99999999, 999999999, 1111111111, 9999999999, 55555555555, 99999999999, 999999999999, 7777777777777, 9999999999999, 22222222222222, 99999999999999, 999999999999999, 4444444444444444, 9999999999999999, 88888888888888888, 99999999999999999
Offset: 1

Views

Author

Howard Berman (howard_berman(AT)hotmail.com), Oct 22 2008

Keywords

Comments

Kaprekar numbers (A006886) all of whose digits are equal. - N. J. A. Sloane, Mar 26 2025
The only numbers where the repeated digit and the number of digits are the same are 1, 88888888 and 999999999.
Conjectures from Daniel Mondot, Mar 28 2025: (Start)
The sequence a(n)%10 (i.e. the last (or any) digit of a(n)), is 15-periodic. the sequence would be : 1,9,5,9,9,7,9,2,9,9,4,9,8,9,9, repeating.
For n>15, a(n) can be constructed from a(n-15) by concatenating to it 9 times a digit of a(n-15). (End)
The above two conjectures are linked, they are easily proved using modular arithmetic, and correspond to the explicit formula given below. - M. F. Hasler, Mar 28 2025

Crossrefs

Intersection of A006886 (Kaprekar numbers) and A010785 (repdigits).
A382161 is a subsequence.
A subsequence of A382163 (palindromic Kaprekar numbers).
Cf. A002275 (repunits), A210434 (#digits(4^n), equals #digits(a(n+1)) for n < 98 but not beyond, due to log10(4) ~ 0.6).

Programs

  • PARI
    is_A145875(n)=is_A006886(n) && #Set(digits(n))==1 \\ M. F. Hasler, Mar 31 2025
    apply( {A145875(n)=10^(n--*3\5+1)\9*if(bittest(5, n%5),[1,5,7,2,4,8][n%15*2\/5+1],9)}, [1..29]) \\ M. F. Hasler, Mar 28 2025
    
  • PARI
    isk(k) = my(d=digits(k^2), nb=#d); if (nb%2, d=concat(0, d); nb++); fromdigits(Vec(d, nb/2)) + fromdigits(vector(nb/2, i, d[nb/2+i])) == k;
    lista(nn) = my(list=List()); for (i=1, nn, for (d=1, 9, my(x = fromdigits(vector(i, k, d))); if (isk(x), listput(list, x)););); Vec(list); \\ Michel Marcus, Mar 29 2025

Formula

a(n) = d(n) * R(floor(n*3/5+2/5)), where R(n) = (10^n-1)/9 = A002275(n) and d = (1, 9, 5, 9, 9; 7, 9, 2, 9, 9; 4, 9, 8, 9, 9) repeating, where ";" is used just to emphasize the 3 similar subgroups of length 5, with 2nd, 4th and 5th element equal to 9. - M. F. Hasler, Mar 28 2025
Length (= number of digits) of the n-th term is floor((n+2)*3/5). - M. F. Hasler, Mar 31 2025

Extensions

More terms from Gupta (2025) added by N. J. A. Sloane, Mar 26 2025

A382164 Palindromic Kaprekar numbers that are not repdigit Kaprekar numbers.

Original entry on oeis.org

909090909, 9090909090909090909090909090909, 81188118811881188118811881188118, 545545545545545545545545545545545, 277227722772277227722772277227722772, 505050505050505050505050505050505050505, 4040404040404040404040404040404040404040404040404
Offset: 1

Views

Author

N. J. A. Sloane, Mar 26 2025

Keywords

Comments

[The data is copied from Gupta (2025); it would be nice to have it confirmed.]

Crossrefs

Cf. A006886.
A382163 is the union of this sequence and A145875.
Showing 1-2 of 2 results.