A382177 a(n) is the least k > 1 such that the factorial base expansion of k*n starts with that of n while the remaining digits are zeros.
2, 2, 3, 10, 3, 312, 4, 18, 18, 96, 96, 600, 4, 6168960, 6120, 18, 18, 11017036800, 4, 56229997824000, 114, 760, 68947200, 18, 5, 14544, 141120, 192, 13320, 9092075324665919034015350784000000, 28, 520412336961032355840000, 27, 1400, 199584000, 116496, 180
Offset: 0
Examples
The first terms, in decimal and in factorial base, are: n a(n) fact(n) fact(a(n)*n) -- ------- ------- --------------------- 0 2 0 0 1 2 1 1,0 2 3 1,0 1,0,0 3 10 1,1 1,1,0,0 4 3 2,0 2,0,0 5 312 2,1 2,1,0,0,0,0 6 4 1,0,0 1,0,0,0 7 18 1,0,1 1,0,1,0,0 8 18 1,1,0 1,1,0,0,0 9 96 1,1,1 1,1,1,0,0,0 10 96 1,2,0 1,2,0,0,0,0 11 600 1,2,1 1,2,1,0,0,0,0 12 4 2,0,0 2,0,0,0 13 6168960 2,0,1 2,0,1,0,0,0,0,0,0,0,0 14 6120 2,1,0 2,1,0,0,0,0,0,0 15 18 2,1,1 2,1,1,0,0
Programs
Formula
a(k!) = k+1 for any k > 0.
Comments