cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A382189 Expansion of 1/(1 - 4 * Sum_{k>=0} x^(3^k))^(1/2).

Original entry on oeis.org

1, 2, 6, 22, 82, 312, 1210, 4752, 18834, 75186, 301868, 1217664, 4930918, 20033432, 81621456, 333357656, 1364395770, 5594799576, 22980090870, 94529049296, 389367825444, 1605758772136, 6629456308464, 27397510466856, 113329594803078, 469183242566016, 1943927996932656
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2025

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = 1/(1/A(x^3)^2 - 4*x)^(1/2).

A382196 Expansion of (1 + 9 * Sum_{k>=0} x^(3^k))^(1/3).

Original entry on oeis.org

1, 3, -9, 48, -288, 1917, -13563, 99927, -758079, 5879757, -46401705, 371337021, -3005974710, 24568145019, -202442064183, 1679864383800, -14024716370064, 117715927282470, -992725129013121, 8407191323492226, -71467963130581758, 609605555349330009
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2025

Keywords

Comments

This sequence is different from A298308.

Crossrefs

Formula

G.f. A(x) satisfies A(x) = (A(x^3)^3 + 9*x)^(1/3).
Showing 1-2 of 2 results.