A382192 Number of components of the graph with code A076184(n).
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
As an irregular triangle, where the first row contains 1 term and row n >= 2 contains A002494(n) terms: 1; 1; 1, 1; 1, 2, 1, 1, 1, 1, 1; 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; ... For n = 6, A076184(6) = 12 encodes the graph on 4 vertices and 2 disjoint edges. This graph has 2 components, so a(6) = 2.