A382203 Number of normal multiset partitions of weight n into constant multisets with distinct sums.
1, 1, 2, 4, 9, 19, 37, 76, 159, 326, 671, 1376, 2815, 5759, 11774, 24083, 49249, 100632, 205490, 419420, 855799, 1745889, 3561867, 7268240, 14836127, 30295633, 61888616
Offset: 0
Examples
The a(1) = 1 through a(4) = 9 multiset partitions: {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}} {{1},{2}} {{1},{1,1}} {{1},{1,1,1}} {{1},{2,2}} {{1,1},{2,2}} {{1},{2},{3}} {{1},{2,2,2}} {{2},{1,1,1}} {{1},{2},{2,2}} {{1},{2},{3,3}} {{1},{3},{2,2}} {{1},{2},{3},{4}} The a(5) = 19 factorizations: 32 2*16 2*3*27 2*3*5*25 2*3*5*7*11 4*8 2*4*9 2*3*5*9 2*81 2*3*8 2*3*5*49 4*27 2*3*125 2*3*7*25 9*8 2*9*25 3*16 2*5*27 5*4*9
Crossrefs
Without distinct sums we have A055887.
Twice-partitions of this type are counted by A279786.
For distinct blocks instead of sums we have A304969.
Without constant blocks we have A326519.
Factorizations of this type are counted by A381635.
For strict instead of constant blocks we have A381718.
For equal instead of distinct block-sums we have A382204.
For equal block-sums and strict blocks we have A382429.
A089259 counts set multipartitions of integer partitions.
Programs
-
Mathematica
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@SameQ@@@#&]&/@allnorm[n])],{n,0,5}]
Extensions
a(14)-a(26) from Christian Sievers, Apr 04 2025
Comments