A382215 MM-numbers of multiset partitions into constant blocks with a common sum.
1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 35, 41, 49, 53, 59, 64, 67, 81, 83, 97, 103, 109, 121, 125, 127, 128, 131, 157, 175, 179, 191, 209, 211, 227, 241, 243, 245, 256, 277, 283, 289, 311, 331, 343, 353, 361, 367, 391, 401, 419, 431, 461
Offset: 1
Keywords
Examples
The terms together with their prime indices of prime indices begin: 1: {} 2: {{}} 3: {{1}} 4: {{},{}} 5: {{2}} 7: {{1,1}} 8: {{},{},{}} 9: {{1},{1}} 11: {{3}} 16: {{},{},{},{}} 17: {{4}} 19: {{1,1,1}} 23: {{2,2}} 25: {{2},{2}} 27: {{1},{1},{1}} 31: {{5}} 32: {{},{},{},{},{}} 35: {{2},{1,1}} 41: {{6}} 49: {{1,1},{1,1}} 53: {{1,1,1,1}} 59: {{7}}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],SameQ@@Total/@prix/@prix[#] && And@@SameQ@@@prix/@prix[#]&]
-
PARI
is(k) = my(f=factor(k)[, 1]~, k, p, v=vector(#f, i, primepi(f[i]))); for(i=1, #v, k=isprimepower(v[i], &p); if(k||v[i]==1, v[i]=k*primepi(p), return(0))); #Set(v)<2; \\ Jinyuan Wang, Apr 02 2025
Comments