A382232 Irregular triangle read by rows: T(n,k) = [x^k] (1+x) * A_n(x)^2, where A_n(x) is the n-th Eulerian polynomial.
1, 1, 1, 1, 1, 3, 3, 1, 1, 9, 26, 26, 9, 1, 1, 23, 165, 387, 387, 165, 23, 1, 1, 53, 860, 4292, 9194, 9194, 4292, 860, 53, 1, 1, 115, 3967, 38885, 160778, 314654, 314654, 160778, 38885, 3967, 115, 1, 1, 241, 17022, 307454, 2291375, 8041695, 14743812, 14743812, 8041695, 2291375, 307454, 17022, 241, 1
Offset: 0
Examples
Irregular triangle begins: 1, 1; 1, 1; 1, 3, 3, 1; 1, 9, 26, 26, 9, 1; 1, 23, 165, 387, 387, 165, 23, 1; 1, 53, 860, 4292, 9194, 9194, 4292, 860, 53, 1; ...
Links
- Ryuichi Sakamoto, The h*-polynomial of the cut polytope of K_{2,m} in the lattice spanned by its vertices, arXiv:1904.10667 [math.CO], 2019.
- Ryuichi Sakamoto, The h*-polynomial of the cut polytope of K_{2,m} in the lattice spanned by its vertices, Journal of Integer Sequences, Vol. 23, 2020, #20.7.5.
- OEIS Wiki, Eulerian polynomials.
Programs
-
PARI
a(n) = sum(k=0, n, k!*stirling(n, k, 2)*(x-1)^(n-k)); T(n, k) = polcoef((1+x)*a(n)^2, k); for(n=0, 7, for(k=0, 2*(n+0^n)-1, print1(T(n, k), ", ")));
Formula
T(n,k) = T(n,2*n-1-k) for n > 0.