cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382232 Irregular triangle read by rows: T(n,k) = [x^k] (1+x) * A_n(x)^2, where A_n(x) is the n-th Eulerian polynomial.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 1, 9, 26, 26, 9, 1, 1, 23, 165, 387, 387, 165, 23, 1, 1, 53, 860, 4292, 9194, 9194, 4292, 860, 53, 1, 1, 115, 3967, 38885, 160778, 314654, 314654, 160778, 38885, 3967, 115, 1, 1, 241, 17022, 307454, 2291375, 8041695, 14743812, 14743812, 8041695, 2291375, 307454, 17022, 241, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2025

Keywords

Examples

			Irregular triangle begins:
  1,  1;
  1,  1;
  1,  3,   3,    1;
  1,  9,  26,   26,    9,    1;
  1, 23, 165,  387,  387,  165,   23,   1;
  1, 53, 860, 4292, 9194, 9194, 4292, 860, 53, 1;
  ...
		

Crossrefs

Row sums give A048617.

Programs

  • PARI
    a(n) = sum(k=0, n, k!*stirling(n, k, 2)*(x-1)^(n-k));
    T(n, k) = polcoef((1+x)*a(n)^2, k);
    for(n=0, 7, for(k=0, 2*(n+0^n)-1, print1(T(n, k), ", ")));

Formula

T(n,k) = T(n,2*n-1-k) for n > 0.