A382286 a(n) is the least k such that floor(sqrt(n*k/d(n*k))) = floor(sqrt(d(n*k))), where d(k) is the largest divisor of k which is <= sqrt(k).
1, 1, 1, 1, 4, 1, 4, 2, 1, 2, 9, 2, 9, 2, 2, 1, 16, 2, 16, 1, 2, 5, 16, 1, 1, 5, 3, 1, 25, 1, 25, 1, 3, 8, 1, 1, 36, 8, 3, 1, 36, 1, 36, 3, 2, 8, 36, 1, 1, 2, 6, 3, 49, 2, 2, 1, 6, 13, 49, 2, 49, 13, 2, 1, 2, 2, 64, 4, 6, 2, 64, 2, 64, 18, 2, 4, 2, 2, 64, 4, 1, 18, 81, 2, 4, 18, 9, 4, 81
Offset: 1
Keywords
Examples
Let C(k)=floor(sqrt(k/d(k)))-floor(sqrt(d(k))), where d(k) is the largest divisor of k which is <= sqrt(k): a(1)=a(2)=a(3)=1 since C(n)=0, for n=1,2,3. a(4)=1 (and generally a(n^2)=1). a(5)=4, since C(k*5) > 0 for k=1 to 3 and C(4*k)=0. a(6)=1 since C(6)=0. a(7)=4 since C(k*7) > 0 for k=1 to 3 and C(4*7)=0. a(8)=2 since C(8)=1 and C(2*8)=0. a(9)=1 a(11)=9 since C(k*11) > 0 for k=1 to 8 and C(9*11)=0.
Programs
-
PARI
d(n) = if(n<2, 1, my(d=divisors(n)); d[(length(d)+1)\2]); \\ A033676 a(n) = my(k=1); while (sqrtint(n*k/d(n*k)) != sqrtint(d(n*k)), k++); k; \\ Michel Marcus, Mar 21 2025
Comments