A382294 Decimal expansion of the asymptotic mean of the excess of the number of Fermi-Dirac factors of k over the number of distinct prime factors of k when k runs over the positive integers.
1, 3, 6, 0, 5, 4, 4, 7, 0, 4, 9, 6, 2, 2, 8, 3, 6, 5, 2, 2, 9, 9, 8, 9, 2, 6, 3, 8, 3, 7, 6, 8, 9, 9, 7, 6, 1, 6, 5, 8, 2, 4, 6, 9, 0, 8, 3, 7, 8, 3, 9, 7, 1, 0, 3, 6, 8, 9, 3, 4, 2, 7, 8, 7, 1, 5, 6, 1, 4, 9, 7, 6, 6, 7, 4, 9, 7, 7, 1, 7, 9, 1, 4, 6, 0, 6, 5, 2, 2, 8, 2, 9, 7, 5, 0, 8, 5, 4, 1, 4, 8, 7, 3, 5, 9
Offset: 0
Examples
0.13605447049622836522998926383768997616582469083783...
Programs
-
Mathematica
s[n_] := Module[{c = CoefficientList[Series[-x + Sum[x^(2^k)/(1+x^(2^k)), {k, 0, n}],{x, 0, 2^n}], x]},Sum[c[[i]] * PrimeZetaP[i-1], {i, 3, Length[c]-2}]]; RealDigits[s[10], 10, 120][[1]]
-
PARI
default(realprecision, 120); default(parisize, 10000000); f(x, n) = -x + sum(k = 0, n, x^(2^k)/(1+x^(2^k))); sumeulerrat(f(1/p, 8))
Comments