A382295 Decimal expansion of the asymptotic mean of the number of ways to factor k into "Fermi-Dirac primes" when k runs over the positive integers.
1, 7, 8, 7, 6, 3, 6, 8, 0, 0, 1, 6, 9, 4, 4, 5, 6, 6, 6, 9, 8, 8, 6, 3, 2, 9, 3, 9, 4, 8, 9, 4, 5, 9, 8, 8, 1, 4, 6, 5, 9, 0, 0, 4, 6, 1, 3, 7, 0, 0, 2, 2, 6, 4, 1, 1, 6, 7, 3, 2, 9, 5, 4, 5, 6, 6, 6, 3, 7, 5, 1, 3, 9, 5, 4, 3, 4, 0, 2, 5, 1, 5, 5, 1, 5, 5, 0, 8, 8, 3, 3, 3, 5, 8, 7, 1, 3, 7, 5, 6, 1, 5, 6, 0, 4
Offset: 1
Examples
1.78763680016944566698863293948945988146590046137002...
Crossrefs
Programs
-
Mathematica
$MaxExtraPrecision = 1500; m = 1500; em = 50; f[x_] := Log[1-x] - Sum[Log[1-x^(2^k)], {k, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
-
PARI
default(realprecision, 120); default(parisize, 10000000); f(x, n) = (1-x) / prod(k = 0, n, (1 - x^(2^k))); prodeulerrat(f(1/p, 10))
Formula
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A050377(k).
Equals Product_{p prime} f(1/p), where f(x) = (1-x) / Product_{k>=0} (1 - x^(2^k)).