cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382295 Decimal expansion of the asymptotic mean of the number of ways to factor k into "Fermi-Dirac primes" when k runs over the positive integers.

Original entry on oeis.org

1, 7, 8, 7, 6, 3, 6, 8, 0, 0, 1, 6, 9, 4, 4, 5, 6, 6, 6, 9, 8, 8, 6, 3, 2, 9, 3, 9, 4, 8, 9, 4, 5, 9, 8, 8, 1, 4, 6, 5, 9, 0, 0, 4, 6, 1, 3, 7, 0, 0, 2, 2, 6, 4, 1, 1, 6, 7, 3, 2, 9, 5, 4, 5, 6, 6, 6, 3, 7, 5, 1, 3, 9, 5, 4, 3, 4, 0, 2, 5, 1, 5, 5, 1, 5, 5, 0, 8, 8, 3, 3, 3, 5, 8, 7, 1, 3, 7, 5, 6, 1, 5, 6, 0, 4
Offset: 1

Views

Author

Amiram Eldar, Mar 21 2025

Keywords

Examples

			1.78763680016944566698863293948945988146590046137002...
		

Crossrefs

Cf. A005117 (positions of 1's in A050377), A050377, A082293 (positions of 2's), A330687 (positions of records).

Programs

  • Mathematica
    $MaxExtraPrecision = 1500; m = 1500; em = 50; f[x_] := Log[1-x] - Sum[Log[1-x^(2^k)], {k, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); default(parisize, 10000000);
    f(x, n) = (1-x) / prod(k = 0, n, (1 - x^(2^k)));
    prodeulerrat(f(1/p, 10))

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A050377(k).
Equals Product_{p prime} f(1/p), where f(x) = (1-x) / Product_{k>=0} (1 - x^(2^k)).