A382302 Number of integer partitions of n with greatest part, greatest multiplicity, and number of distinct parts all equal.
0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 2, 2, 2, 4, 3, 3, 4, 4, 3, 6, 5, 8, 8, 13, 13, 16, 17, 21, 22, 25, 26, 32, 34, 37, 44, 47, 55, 62, 72, 78, 94, 103, 118, 132, 151, 163, 189, 205, 230, 251, 284, 307, 346, 377, 420, 462, 515, 562, 629, 690, 763
Offset: 0
Keywords
Examples
The a(n) partitions for n = 1, 2, 10, 13, 14, 19, 20, 21: 1 . 32221 332221 333221 4333321 43333211 43333221 322111 333211 3322211 43322221 44322221 433332111 3322111 3332111 433321111 433222211 443222211 4321111 443221111 443321111 444321111 543211111 4332221111 4332222111 4322221111 4333221111 4432221111 5432211111
Links
- John Tyler Rascoe, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Max@@#==Max@@Length/@Split[#]==Length[Union[#]]&]],{n,0,30}]
-
PARI
A_x(N) = {if(N<1,[0],my(x='x+O('x^(N+1))); concat([0],Vec(sum(i=1,N, prod(j=1,i, (x^j-x^((i+1)*j))/(1-x^j)) - prod(j=1,i, (x^j-x^(i*j))/(1-x^j))))))} A_x(60) \\ John Tyler Rascoe, Mar 25 2025
Formula
G.f.: Sum_{i>0} (B(i+1,i,x) - B(i,i,x)) where B(a,c,x) = Product_{j=1..c} (x^j - x^(a*j))/(1 - x^j). - John Tyler Rascoe, Mar 25 2025