cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A128612 Triangle T(n,k) read by rows: number of permutations in [n] with exactly k ascents that have an even number of inversions.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 5, 5, 1, 1, 14, 30, 14, 1, 0, 28, 155, 147, 29, 1, 0, 56, 605, 1208, 586, 64, 1, 1, 127, 2133, 7819, 7819, 2133, 127, 1, 1, 262, 7288, 44074, 78190, 44074, 7288, 262, 1, 0, 496, 23947, 227623, 655039, 655315, 227569, 23893, 517, 1, 0, 992, 76305, 1102068, 4868556, 7862124, 4869558, 1101420, 76332, 1044, 1
Offset: 1

Views

Author

Ralf Stephan, May 08 2007

Keywords

Examples

			Triangle starts:
  1;
  0,   1;
  0,   2,    1;
  1,   5,    5,    1;
  1,  14,   30,   14,    1;
  0,  28,  155,  147,   29,    1;
  0,  56,  605, 1208,  586,   64,   1;
  1, 127, 2133, 7819, 7819, 2133, 127, 1;
  ...
		

Crossrefs

Cf. A145882 (similar with rows reversed).
Row sums give A001710.
T(2n,n) gives A382309.

Programs

  • Maple
    A008292 := proc(n,k) local j; add( (-1)^j*(k-j)^n*binomial(n+1,j),j=0..k) ; end: A049061 := proc(n,k) if k <= 0 or n <=0 or k > n then 0; elif n = 1 then 1 ; elif n mod 2 = 0 then A049061(n-1,k)-A049061(n-1,k-1) ; else k*A049061(n-1,k)+(n-k+1)*A049061(n-1,k-1) ; fi ; end: A128612 := proc(n,k) (A008292(n,n-k)+A049061(n,n-k))/2 ; end: for n from 1 to 11 do for k from 0 to n-1 do printf("%d,",A128612(n,k)) ; od: od: # R. J. Mathar, Nov 01 2007
    # second Maple program:
    b:= proc(u, o, i) option remember; expand(`if`(u+o=0, 1-i,
           add(b(u+j-1, o-j, irem(i+u+j-1, 2)), j=1..o)*x+
           add(b(u-j, o+j-1, irem(i+u-j, 2)), j=1..u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n, 0$2)):
    seq(T(n), n=1..14);  # Alois P. Heinz, May 02 2017
  • Mathematica
    b[u_, o_, i_] := b[u, o, i] = Expand[If[u + o == 0, 1 - i, Sum[b[u + j - 1, o - j, Mod[i + u + j - 1, 2]], {j, 1, o}]*x + Sum[b[u - j, o + j - 1, Mod[i + u - j, 2]], {j, 1, u}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n-1}]][b[n, 0,0]];
    Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jul 25 2017, after Alois P. Heinz *)

Formula

T(n,k) = (1/2) * (A008292(n,n-k) + A049061(n,n-k)), n>=1, 0<=kR. J. Mathar, Nov 01 2007

Extensions

More terms from R. J. Mathar, Nov 01 2007
Showing 1-1 of 1 results.