cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382314 G.f. satisfies A(x) = 1/(1-x) + 2*x*A(x^2) + 3*x^2*A(x^3).

Original entry on oeis.org

1, 3, 4, 7, 1, 18, 1, 15, 13, 3, 1, 58, 1, 3, 4, 31, 1, 81, 1, 7, 4, 3, 1, 162, 1, 3, 40, 7, 1, 18, 1, 63, 4, 3, 1, 337, 1, 3, 4, 15, 1, 18, 1, 7, 13, 3, 1, 418, 1, 3, 4, 7, 1, 324, 1, 15, 4, 3, 1, 58, 1, 3, 13, 127, 1, 18, 1, 7, 4, 3, 1, 1161, 1, 3, 4, 7, 1, 18, 1, 31, 121, 3, 1, 58, 1, 3, 4, 15, 1, 81, 1, 7, 4, 3, 1, 1026
Offset: 0

Views

Author

Paul D. Hanna, Apr 14 2025

Keywords

Comments

Logarithmic derivative of A382126.

Examples

			G.f.: A(x) = 1 + 3*x + 4*x^2 + 7*x^3 + x^4 + 18*x^5 + x^6 + 15*x^7 + 13*x^8 + 3*x^9 + x^10 + 58*x^11 + x^12 + 3*x^13 + 4*x^14 + 31*x^15 + ...
where A(x) = 1/(1-x) + 2*x*A(x^2) + 3*x^2*A(x^3).
RELATED SERIES.
The logarithm of the g.f. B(x) for A382126 yields the series
log(B(x)) = x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + x^5/5 + 18*x^6/6 + x^7/7 + 15*x^8/8 + 13*x^9/9 + 3*x^10/10 + x^11/11 + 58*x^12/12 + ... + a(n-1)*x^n/n + ...
where B(x) = B(x^2)*B(x^3)/(1-x) begins
B(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 11*x^6 + 13*x^7 + 20*x^8 + 26*x^9 + 36*x^10 + 44*x^11 + 66*x^12 + ... + A382126(n)*x^n + ...
so that A(x) = B'(x)/B(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x +x*O(x^n)); for(i=1,#binary(n), A = 1/(1-x) + 2*x*subst(A,x,x^2) + 3*x^2*subst(A,x,x^3) + x*O(x^n)  ); polcoef(A,n)}
    for(n=0,100,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1/(1-x) + 2*x*A(x^2) + 3*x^2*A(x^3).
(2) A(x) = (1-x)^2*(1+2*x)*(1+2*x+3*x^2)/((1-x)*(1-x^2)*(1-x^3)) + 4*x^3*A(x^4) + 12*x^5*A(x^6) + 9*x^8*A(x^9).
(3) A(x) = (1/x)*Sum_{n>=0} Sum_{k=0..n} binomial(n,k) * 2^(n-k)*3^k * x^(2^(n-k)*3^k) / (1 - x^(2^(n-k)*3^k)).
(4) A(x) = (1/x)*Sum_{n>=1} B(n) * A003586(n) * x^A003586(n)/(1 - x^A003586(n)) where B(n) = binomial(F2(n)+F3(n),F3(n)), with F2(n) = A007814(A003586(n)) and F3(n) = A007949(A003586(n)).
(5) A(x) = B'(x)/B(x) where B(x) = B(x^2)*B(x^3)/(1-x) is the g.f. of A382126.