A382347 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = [x^n] Product_{j=0..n} (1 + (k*n+j)*x).
1, 1, 1, 1, 3, 2, 1, 5, 26, 6, 1, 7, 74, 342, 24, 1, 9, 146, 1650, 5944, 120, 1, 11, 242, 4578, 48504, 127860, 720, 1, 13, 362, 9774, 189144, 1763100, 3272688, 5040, 1, 15, 506, 17886, 520024, 9660840, 76223664, 97053936, 40320, 1, 17, 674, 29562, 1164024, 34201080, 586813968, 3817038960, 3270729600, 362880
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 3, 5, 7, 9, 11, ... 2, 26, 74, 146, 242, 362, ... 6, 342, 1650, 4578, 9774, 17886, ... 24, 5944, 48504, 189144, 520024, 1164024, ... 120, 127860, 1763100, 9660840, 34201080, 93638820, ...
Crossrefs
Programs
-
PARI
a(n, k) = sum(j=0, n, (j+1)*(k*n)^j*abs(stirling(n+1, j+1, 1)));
Formula
A(n,k) = A165675((k+1)*n,k*n).
A(n,k) = Sum_{j=0..n} (j+1) * (k*n)^j * |Stirling1(n+1,j+1)|.
A(n,k) = (n+1)! * Sum_{j=0..n} (-1)^j * binomial(-k*n,j)/(n+1-j).
A(n,k) = ((k+1)*n)!/(k*n)! * (1 + k*n * Sum_{j=1..n} 1/(k*n+j)).