A382383 Number of distinct variances of nonempty subsets of {1, ..., n}.
0, 1, 2, 4, 7, 13, 23, 40, 68, 124, 208, 368, 559, 918, 1352, 2017, 2891, 4122, 5506, 7458, 9623, 12620, 16125, 20626, 25401, 31513, 38587, 47244, 56592, 68021, 80503, 95859, 112137, 131986, 153353, 178434, 205627, 236266, 269884, 307167, 346844, 394924, 445797, 501739
Offset: 0
Keywords
Examples
For n = 4, the following a(4) = 7 variances occur for subsets of {1, 2, 3, 4}: variance | corresponding subsets ---------+---------------------- 0 | {1}, {2}, {3}, {4} 1/4 | {1,2}, {2,3}, {3,4} 2/3 | {1,2,3}, {2,3,4} 1 | {1,3}, {2,4} 5/4 | {1,2,3,4} 14/9 | {1,2,4}, {1,3,4} 9/4 | {1,4}
Programs
-
Python
from fractions import Fraction def A382383_lst(n): s,lst=set(),[0] for k in range(n): s|={ (x+k,x2+k**2,l+1 ) for (x,x2,l) in s } s.add( (k,k**2,1) ) lst.append(len({ Fraction(x2,l) - Fraction(x,l)**2 for (x,x2,l) in s })) return lst # Bert Dobbelaere, Apr 06 2025
Formula
a(n) <= 1 + Sum_{k=1..n-1} A005418(k). The smallest positive n for which strict inequality holds is n = 7. This is because there exist subsets of {1, ..., 7} which are not translates or reflections of each other, but nonetheless have the same variance. For example, {1,5}, {1,3,4,5,7}, and {1,2,3,4,5,6,7} all have variance 4, and {1,2,6} and {1,2,3,5,6,7} both have variance 14/3.
Extensions
a(34)-a(43) from Bert Dobbelaere, Apr 06 2025
Comments