cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382419 The product of exponents in the prime factorization of the cubefree numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2025

Keywords

Comments

Differs from A368712 at n = 1, 31, 85, 151, 164, 189, ... .
All the terms are powers of 2.

Crossrefs

Programs

  • Mathematica
    s[n_] := Times @@ FactorInteger[n][[;; , 2]]; cubeFreeQ[n_] := Max[FactorInteger[n][[;; , 2]]] < 3; s /@ Select[Range[120], cubeFreeQ]
  • PARI
    list(kmax) = {my(e); print1(1, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(vecmax(e) < 3, print1(vecprod(e), ", "))); }

Formula

a(n) = A005361(A004709(n)).
a(n) = 2^A376366(n).
a(n) >= A368712(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3) * Product_{p prime} (1 + 1/p^2 - 2/p^3) = A002117 * A330594 = 1.33062904409568262931... .